Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
Answer Details
SQR + RQV + VQU = 18o angle on a straight line SP is parallel to QR and PV is parallel to TR
< STP = < RQV = 30o
But SQR + 30o + 50o = 180o
SQR = 180 - 80
= 100o
Question 2 Report
An open rectangular box is made of wood 2cm thick. If the internal dimensions of the box are 50cm long, 36cm wide and 20cm deep, the box volume of wood in the box is
Answer Details
Internal dimension are 50cm, 36cm and 20cm
internal volume = 50 x 36 x 20cm3
1000 x 36cm3
= 36000cm3
External dimension are 54cm x 40cm x 22cm
= 2160cm2 x 22cm = 47520cm3
Volume of wood = Ext. volume - Int. volume
= 47,520cm3 - 36,000cm3
= 11,520cm3
Question 3 Report
Find the point (x, y) on the Euclidean plane where the curve y = 2x2 - 2x + 3 has 2 as gradient
Answer Details
We know that the gradient of a curve is given by its derivative. Therefore, we need to find the derivative of the given curve and equate it to 2 to find the point where the gradient is 2. y = 2x^2 - 2x + 3 dy/dx = 4x - 2 Equating dy/dx to 2, we get: 4x - 2 = 2 4x = 4 x = 1 Substituting x = 1 in the original equation, we get: y = 2(1)^2 - 2(1) + 3 y = 3 Therefore, the point where the curve has a gradient of 2 is (1, 3). So, the correct option is: (1, 3).
Question 4 Report
In a survey, it was observed that 20 students read newspapers and 35 read novels. If 40 of the students read either newspapers or novels, what is the probability of the students who read both newspapers and novels?
Answer Details
40 = 20 - x + x + 35 - x
40 = 55 - x
x = 55 - 40
= 15
∴ P(both) 1540
= 38
Question 5 Report
What is the locus of a point P which moves on one side of a straight line XY, so that the angle XPY is always equal to 90o?
Answer Details
Since XY is a fixed line and
XPY = 90o P is on one side of XY
P1P2P3......Pn are all possible cases where
XPY = 90o the only possible tendency is a semicircle because angles in semicircle equals 90o
Question 6 Report
Evaluate ∫1−1 (2x + 1)2dx
Answer Details
∫1−1
(2x + 1)2dx
= ∫1−1
(4x2 + 4x + 1)dx
= ∫1−1
[4x33
+ 2x2 + c]
= [43
+ 3 + c] - [4 + 13
+ c]
= 83
+ 3 + -1 - C
= 83
+ 2
= 143
= 423
Question 7 Report
Find the mean deviation of the set of numbers 4, 5, 9
Answer Details
To find the mean deviation of a set of numbers, we first need to find the mean or average of those numbers. The mean of the numbers 4, 5, and 9 is: (mean) = (4 + 5 + 9) / 3 = 6 Next, we need to find the deviation of each number from the mean. To do this, we subtract the mean from each number: 4 - 6 = -2 5 - 6 = -1 9 - 6 = 3 To avoid positive and negative deviations cancelling out, we take the absolute value of each deviation: | -2 | = 2 | -1 | = 1 | 3 | = 3 Then, we find the mean of these absolute deviations by summing them up and dividing by the number of numbers: (2 + 1 + 3) / 3 = 2 Therefore, the mean deviation of the set of numbers 4, 5, 9 is 2. So, the correct option is 2.
Question 8 Report
Find the range of values of x for which 1x
> 2 is true
Answer Details
1x
> 2 = xx2
> 2
x > 2x2
= 2x2 < x
= 2x2 - x < 0
= x(2x - 10 < 0
Case 1(+, -) = x > 0, 2x - 1 < 0
x > 0, x < 12
(solution)
Case 2(-, 4) = x < 0, 2x - 1 > 0
x < 0, x , 12
= 0
Question 9 Report
Simplify √48 - 9√3 + √75
Answer Details
√48
- 9√3
+ √75
Rearrange = √48
+ √75
- 9√3
= (√16 x √3) + (√25 x √3) - 9√3
=4√3 + 5√3 - 9√3
Rationalize →
9√3 = 9√3
x √3√3
= 9√3√9
- 9√3√3
= 3√3
Question 10 Report
In the diagram, PTS is a tangent to the circle TQR at T. Calculate < RTS
Answer Details
RTS = RQT (angle between a tangent and a chord at the point of contact is equal to the angle in the alternate segment) But R = Q + T = 180
RQT = 180? - (50 + 60)
= 180? - 110?
= 70?
Since RQT = RTS = 70?
Question 11 Report
Evaluate 0.36×5.4×0.634.2×9.0×2.4
Answer Details
0.36×5.4×0.634.2×9.0×2.4
= 36420×5490×63240
= 670×1830×2180
= 272000
= 0.0135
≈
= 0.013
Question 12 Report
The equation of the graph is
Answer Details
y = x3 - 27, y = -27 → (0, -27)
when y = 0, x = 3 (3, 0)
Question 13 Report
The mean of twelve positive numbers is 3. When another number is added, the mean becomes 5. Find the thirteenth number
Answer Details
Let the sum of the 12 numbers be x and the 13th number be y.
x12=3⟹x=36
36+y13=5⟹36+y=65
y=65−36=29
Question 14 Report
Simplify (2m?u)2?(m?2u)25m2?5u2
Answer Details
(2m?u)2?(m?2u)25m2?5u2
= 2m?u+m?2u)(2m?u?m+2u)5(m+u)(m?u)
= 3(m?u)(m+u)5(m+u)(m?u)
= 35
Question 15 Report
Find the nth term of the sequence 3, 6, 10, 15, 21.....
Answer Details
(n+1)(n+2)2
If n = 1, the expression becomes 3
n = 2, the expression becomes 6
n = 4, the expression becomes 15
n = 5, the expression becomes 21
Question 16 Report
x12345fy+2y−22y−3y+43y−4
This table shows the frequency distribution of a data if the mean is 4314 find y
Answer Details
Question 17 Report
Given that for sets A and B, in a universal set E, A ? B then A ? (A ? B)1 is
Answer Details
A ⊂
B means A is contained in B i.e. A is a subset of B(A ∩
B)1 = A1
A(A ∩
B)1 = A ∩
A1
The intersection of complement of a set P and P1 has no element
i.e. n(A ∩
A1) = ϕ
Question 18 Report
The grades A1, A2, A3, C4 and F earned by students in a particular course are shown in the pie chart. What percentage of the students obtained a C4 grade?
Answer Details
Question 19 Report
If y = 3t3 + 2t2 - 7t + 3, find dydt at t = -1
Answer Details
y = 3t3 + 2t2 - 7t + 3
dydt
= 9t2 + 4t - 7
When t = -1
dydt
= 9(-1)2 + 4(-1) - 7
= 9 - 4 -7
= 9 - 11
= -2
Question 20 Report
The angle of depression of a boat from the top of a cliff 10m high is 30. How far is the boat from the foot of the cliff?
Answer Details
The given scenario can be visualized as follows:
A (top of cliff) /| / | / | / | 10m / | /θ | / | / | B--------C (boat on water surface)
Here, the angle of depression of point B from point A is given as 30 degrees. We are required to find the distance between point B and point C, denoted by BC.
We know that the tangent of an angle is the ratio of the opposite side to the adjacent side. In this case, the opposite side is AB and the adjacent side is BC.
Thus, we have:
tan 30° = AB / BC
AB is the height of the cliff, which is given as 10m.
Hence, we have:
1/√3 = 10 / BC
Solving for BC, we get:
BC = 10√3 meters
Therefore, the boat is 10√3 meters away from the foot of the cliff.
Hence, the answer is 10√3m.
Question 21 Report
Evaluate 13÷[57(910?1+34)]
Answer Details
13÷[57(910?1+34)]
13÷[57(910?1010+34)]
= 13÷[57(?110+34)]
= 13÷[57(?2+1520)]
= 13÷[57×1320]
13+[1328]
= 13×2813
= 2839
Question 22 Report
⊕mod1024682482648642486426246886284
The multiplication table above has modulo 10 on the set S = (2, 4, 6, 8). Find the inverse of 2
Answer Details
The inverse of 2 is 6 since 2 x 6 = 12; under mod 10
12 = 2 which is also the value required
Question 23 Report