Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
Which of these is a medium of transportation in plants?
Answer Details
In plants, the **medium of transportation** is primarily the **cell sap**. Cell sap is the liquid found inside the large central vacuole of plant cells, and it plays a key role in transporting nutrients, minerals, and waste products. The vacuole itself is an important component in maintaining cell turgor pressure, which helps keep the plant upright. The movement of cell sap helps distribute essential substances throughout the plant.
On the other hand, the other options do not serve as media for transportation in plants:
Therefore, for transportation within plants, the **cell sap** is the correct answer.
Question 2 Report
A fruit formed from one flower with many carpels is referred to as
Answer Details
A fruit formed from one flower with many carpels is referred to as an aggregate fruit.
Let me break that down further for clarity: When a single flower contains multiple ovaries (carpels), each of these ovaries can develop into a small fruit. These small fruits collectively form what is known as an aggregate fruit. This means that although the fruit appears to be one single entity, it is actually made up of many small fruits that are clustered together. Each small fruit in the cluster originates from a single ovary of the flower.
An example of an aggregate fruit is a raspberry or a blackberry, where the clustered small fruits can easily be observed.
Question 3 Report
Hemophilia in humans is controlled by the
Answer Details
Hemophilia in humans is controlled by a recessive gene found on the X chromosome. This means that the gene responsible for hemophilia is not dominant and it is located on one of the sex chromosomes, specifically the X chromosome.
Here is how it works:
In conclusion, hemophilia is inherited as a sex-linked recessive trait. This explains why it is more commonly observed in males than in females.
Question 4 Report
Which of the following conditions causes aestivation in animals?
Answer Details
Aestivation is a state of dormancy or reduced activity that animals enter to survive in hot, dry conditions or when food or water is scarce.
Drought is a primary trigger for aestivation in animals, as it leads to water scarcity and increased temperatures.
While strong winds can be uncomfortable for animals, they don't typically trigger aestivation.
Rain is often associated with cooler temperatures and increased water availability.
Cold temperatures are more likely to trigger hibernation not aestivation.
Question 5 Report
The resemblance of an organism to another organism as means of enhancing it's chances of survival in its habitat is known as
Answer Details
The phenomenon you are referring to is called mimicry. Mimicry occurs when one organism, known as the mimic, evolves to resemble another organism, called the model, in order to gain some advantage. This resemblance can help the mimic improve its chances of survival within its habitat.
Mimicry typically involves visual similarities, although it can also extend to auditory, olfactory, or behavioral traits. By mimicking another organism, the mimic may benefit in various ways, such as avoiding predators, enhancing foraging success, or improving reproductive opportunities.
For example, some harmless species may mimic the appearance of dangerous or unpalatable species to deter predators, while others might conceal themselves by resembling the environment or other benign organisms. This strategy not only helps them evade threats but sometimes aids in approaching prey. Overall, mimicry is a powerful evolutionary adaptation that plays a crucial role in the survival of many species.
Question 6 Report
Which of the following statements explains the theory of natural selection?
Answer Details
The theory of natural selection, proposed by Charles Darwin, explains how species evolve over time through the survival and reproduction of individuals that are better adapted to their environment. Let's break down the concepts related to the statements you've provided:
1. There is no struggle for existence: This statement is incorrect in the context of natural selection. The theory is based on the concept of a "struggle for existence," which means that due to limited resources, such as food, water, and shelter, individuals within a species must compete to survive. Because only the organisms that are better adapted to their environment can survive and reproduce, this statement does not correctly explain the theory.
2. New species get better adaptation: While partially related, this statement isn’t a direct explanation of natural selection. Natural selection leads to the evolution of better-adapted individuals within a species, rather than creating entirely new species immediately. Over long periods, accumulated adaptations may lead to the emergence of new species, a process known as speciation.
3. The weaker offspring are eliminated: This statement is a key aspect of natural selection. The process favors individuals with traits that improve their chances of survival and reproduction in a given environment. Over time, weaker individuals or those with less advantageous traits are unlikely to survive and reproduce, leading to a gradual increase in the prevalence of advantageous traits within the population.
4. Unused structures disappear later: This refers more to the concept of "use and disuse," which is associated with Lamarckism, rather than Darwin's theory of natural selection. In natural selection, it's not the unused parts that disappear; rather, changes in the environment can lead to certain traits becoming more or less advantageous, affecting their prevalence in future generations.
In summary, the statement that "the weaker offspring are eliminated" best encapsulates a core component of the theory of natural selection, which is the differential survival and reproduction of individuals based on their inherited traits.
Question 7 Report
Use the diagram above to answer the question that follows
The organ is responsible for
Answer Details
Since I do not have access to the diagram mentioned, I will explain all the functions listed and how they relate to specific organs. You can then match the explanation with the organ shown in the diagram.
Identify the organ in the diagram and match it with the corresponding function explained above.
Question 8 Report
Use the diagram above to answer the question that follows
The diagram demonstrates
Answer Details
Thigmotropism is a directional growth movement which occurs as a mechanosensory response to a touch stimulus. Mechanosensory responses in plants are the ways that plants move or change shape in response to touch, wind, or other mechanical stimuli.
Phototropism is the ability of plants to grow towards or away from light, which is a vital adaptive process for plants.
Geotropism is the growth of the parts of plants in response to the force of gravity.
Hydrotropism is a plant's growth response in which the direction of growth is determined by a stimulus or gradient in water concentration. It is the growth or turning of plant roots towards or away from moisture.
Question 9 Report
A discontinuous morphological variation often used in crime detection is the
Answer Details
In crime detection, the most popular discontinuous morphological variation used is finger prints.
Here's a simple way to understand why:
Defining Morphological Variation: Morphological variation refers to differences in the form and features of living organisms. A variation is termed as 'discontinuous' when it falls into distinct categories with no intermediates. For example, you either have a particular feature or you don't.
Why Fingerprints are Discontinuous: Fingerprints are a good example of discontinuous variation because each individual's set of fingerprints is unique. There are no gradual transitions – you either have a specific fingerprint pattern, like a loop, whorl, or arch, or you don't.
Application in Crime Detection: Because everyone has a unique set of fingerprints and these can be easily left on surfaces, fingerprints are a powerful tool in crime detection. Investigators gather fingerprint evidence from crime scenes and compare them with fingerprint databases to identify suspects.
In conclusion, the use of fingerprints lies mainly in their uniqueness and distinctiveness, making them crucial for identifying individuals in forensic investigations.
Question 10 Report
Loamy soil is characterized by
Answer Details
Loamy soil is characterized by a distinct combination of features that make it particularly favorable for plant growth. It contains a balanced mixture of three types of soil particles: sand, silt, and clay. This combination gives loamy soil its unique properties.
High Humus: Loamy soil is known for having a high content of organic matter, often referred to as humus. Humus is important because it improves soil fertility, provides vital nutrients for plants, and helps retain moisture.
Moderate Porosity: Loamy soil has a structure that provides moderate porosity. This means it can hold water effectively while also allowing excess water to drain away, ensuring that plants have both the water and air they need. It balances water retention and aeration very well.
Because of these characteristics, loamy soil is considered one of the best soils for agriculture and gardening. Therefore, the description that best characterizes loamy soil is high humus and moderate porosity.
Question 11 Report
Which of the following processes releases oxygen to the atmosphere?
Answer Details
In the context of releasing oxygen to the atmosphere, only one of the processes you've listed does this: photosynthesis. Let me explain it in a simple way.
Photosynthesis is a process carried out by plants, some bacteria, and algae. These organisms use sunlight, carbon dioxide, and water to create their food, which is a form of sugar. As a byproduct, they release oxygen into the atmosphere. During this process, chlorophyll, the green pigment in plant cells, captures light energy, and helps convert it into chemical energy.
None of the other processes release oxygen:
- Respiration is a process in which living organisms, including plants and animals, take in oxygen and use it to convert glucose into energy, producing carbon dioxide and water as byproducts.
- Combustion involves burning substances, typically in the presence of oxygen, usually resulting in the production of carbon dioxide, water, and energy (heat and light). It does not release oxygen; rather, it consumes oxygen.
- Decomposition is the breakdown of dead organic matter by microorganisms. During this process, organic matter is converted back into carbon dioxide, methane, and other compounds, but it does not release oxygen.
So, the process that releases oxygen into the atmosphere is photosynthesis.
Question 12 Report
Use the diagram above to answer the question that follows
The experiment is set up to determine the presence of
Answer Details
Chlorophyll: Experiments related to chlorophyll typically involve leaves and light exposure to understand photosynthesis. You might see diagrams showing a leaf that is partially covered with foil to demonstrate which parts of the leaf perform photosynthesis.
Starch: To test for the presence of starch, particularly in plants, an experiment usually involves boiling a leaf in water, then in alcohol, and finally treating it with iodine solution. The presence of starch is confirmed by a blue-black color change.
Oxygen: Experiments designed to detect oxygen often involve aquatic plants like Elodea. When the plant is exposed to light, bubbles or gases released would indicate photosynthetic activity, releasing oxygen.
Pigment: Pigment experiments often relate to chromatography, where pigments are separated on a medium like paper. These are used to study various pigments present within plant tissues.
Question 13 Report
The web-feet of frogs and toads is basically for
Answer Details
The **web-feet** of frogs and toads are primarily for **swimming**. Frogs and toads have webbed feet, which means their toes are connected by a thin membrane. This structure acts like a paddle, allowing them to push against water more effectively and move with greater ease and speed when they swim.
**Webbed feet** increase the surface area of their feet, providing more propulsion through the water, much like the way a duck's or other aquatic animal's webbed feet work. While they may also use their feet for other activities like **leaping** and **walking**, the primary adaptation and evolutionary advantage of having webbed feet is to enhance their ability to **swim** efficiently. Swimming is essential for frogs and toads because many of them live near water bodies and often have to escape predators, hunt for food, or move between land and water habitats.
Question 14 Report
Pentadactyl forelimb of vertebrate function due to differences in environment is
Answer Details
A pentadactyl forelimb in vertebrates, meaning a forelimb with five digits, serves a variety of functions depending on the animal's environment, showcasing how a single basic structure can be adapted through evolution to suit different needs, like swimming, flying, running, or grasping, all while maintaining the underlying five-digit pattern as a result of shared ancestry.
Physiological evidence is an evidence of evolution that deals with the functions of body parts among different species. For example, analogous structures are body parts of different species that have a similar function but can look different.
Moreover, physiological evidence focuses on the specific functional mechanisms and processes that underline the pentadactyl limb's operation while comparative anatomy addresses the evolutionary and anatomical origins of the pentadactyl plan. In other words, Anatomy is the study of the body's physical structure, while physiology is the study of how the body functions.
While both comparative anatomy and physiological evidence can support the concept of the pentadactyl forelimb in vertebrates, the key difference lies in the focus of study: comparative anatomy examines the structural similarities in bone arrangement across different species, whereas physiological evidence investigates how the limb functions and adapts to different behaviours in each species; essentially, comparative anatomy looks at the "blueprint" of the limb, while physiology examines how that structure is used in different contexts.
Embryological evidence of the pentadactyl forelimb of vertebrates includes the regulation of gene expression during limb development.
The fossil record of pentadactyl forelimbs shows that many vertebrates have a similar bone structure, even though their limbs look different on the outside.
Question 15 Report
One of the following is an example of discontinuous variation
Answer Details
Discontinuous variation refers to variations where the traits are distinct and categorical, meaning individuals can be grouped into distinct categories with no intermediate states. A good example of **discontinuous variation** from the options provided is **blood group**. This is because blood groups are distinct categories (e.g., A, B, AB, O) and individuals belong to one category without any intermediate states.
In contrast, other traits like **shape of the head**, **body complexion**, and **pointed nose** often show a range of variations that are continuous, meaning these traits can have many intermediate forms and cannot be easily categorized into discrete categories. Therefore, **blood group** is an **example of discontinuous variation** because it consists of clearly defined and non-overlapping categories.
Question 16 Report
The schlerenchyma tissues consist of
Answer Details
Schlerenchyma tissues are a type of plant tissue known for providing structural support. These tissues are composed of cells that are typically dead at maturity. The cell walls of schlerenchyma tissues are thickened with lignin, which makes them rigid and strong. These characteristics help in supporting the plant body and protecting the plant against external mechanical forces.
To clarify, let's consider the types of cells mentioned:
In summary, schlerenchyma tissues consist mainly of dead cells. Their primary role is structural support, making them distinct from tissues composed of living cells, tracheid cells, or meristematic cells.
Question 17 Report
A succession that occurs in an area where there are no pre-existing community is called
Answer Details
A succession that occurs in an area where there is no pre-existing community is called Primary Succession.
To understand this, imagine a barren landscape where life has never existed before, such as a newly formed volcanic island or a region uncovered by a retreating glacier. In such places, there are no soils or organisms present initially. Here’s how it happens:
In summary, primary succession describes the process of life gradually establishing itself from scratch in an environment that starts with no life or soil, forming an ecosystem over time.
Question 18 Report
If the F1 generation allows for self-pollination, what will be the genotypic ratio of the offspring?
Answer Details
To determine the genotypic ratio of the offspring when the F1 generation allows for self-pollination, first understand the process of Mendelian genetics. In a typical monohybrid cross, let's assume two homozygous parents, one dominant (AA) and one recessive (aa). When these two are crossed, the F1 generation will all have the genotype Aa, which is heterozygous.
If we allow the F1 generation (Aa) to self-pollinate, crossing Aa with Aa, the potential genotypes of the offspring can be determined using a Punnett square:
A | a | |
A | AA | Aa |
a | Aa | aa |
From this Punnett square, you can see the possible combinations:
Thus, the genotypic ratio of the offspring is 1 : 2 : 1, which represents one homozygous dominant (AA), two heterozygous (Aa), and one homozygous recessive (aa).
Question 19 Report
Bile is a greenish alkaline liquid which is stored in the
Answer Details
Bile is a greenish alkaline liquid that plays a crucial role in the digestion of fats. It is produced by the liver and contains bile acids, which are essential for emulsifying fats, making them easier for enzymes to break down. Once bile is produced by the liver, it is not immediately released into the digestive tract. Instead, it is stored and concentrated in the **gall bladder**. The gall bladder is a small, pouch-like organ located just beneath the liver. It stores bile until it is needed, typically after eating, when it is then released into the small intestine to aid in digestion.
Question 20 Report
Use the diagram above to answer the question that follows
The organelle that shows the organism has plant characteristics is
Answer Details
The organelle that indicates the organism has plant characteristics is the chloroplast. Chloroplasts are essential because they contain chlorophyll, the green pigment crucial for photosynthesis. Photosynthesis is the process by which plants convert light energy from the sun into chemical energy stored in glucose, a type of sugar. This capability to conduct photosynthesis is a key characteristic that differentiates plants from animal cells.
Moreover, plant cells are generally characterized by having an additional cell structure which is the cell wall. The cell wall provides structural support and protection. However, in the context of identifying plant characteristics primarily through organelles, the chloroplast is the distinctive feature.
Question 21 Report
The type of circulatory system found in arthropods and some molluscs is
Answer Details
The type of circulatory system found in arthropods and some molluscs is called an open circulatory system.
In an open circulatory system, the blood does not always travel inside blood vessels. Instead, the heart pumps the blood into open cavities or spaces in the body, and hence the organs are directly in contact with the blood. Unlike a closed system, where blood circulates only within blood vessels, the open system allows the blood to flow freely around tissues before being re-collected and circulated again. This kind of system is common in invertebrates like arthropods (insects, spiders) and some molluscs (like snails and clams).
This approach to circulation is generally less efficient than a closed circulatory system because there is less control over the direction and speed of the blood flow. However, it works well for the metabolic needs of these animals. They do not require the high energy needs of more complex organisms, so this system is well-suited to their lifestyles and environments.
Question 22 Report
A trait that is always expressed during crossing of hereditary characteristics is
Answer Details
When discussing the crossing of hereditary characteristics, a trait that is always expressed is known as a dominant trait. In genetics, traits are determined by genes, and each trait has two alleles, one from each parent. Alleles can either be dominant or recessive.
Dominant traits are those that are expressed in the organism's phenotype when at least one allele for the trait is dominant. This means that even if the organism has one dominant and one recessive allele for a trait, the dominant trait will take precedence and be observed in the individual.
Conversely, a recessive trait is only manifested in the phenotype if both alleles for that trait are recessive. Therefore, when a dominant allele is present, it will mask the expression of a recessive allele, resulting in the dominance of the trait in question.
For example, if a plant has one allele for tall height (dominant) and one for short height (recessive), the plant will appear tall because the tall allele is dominant.
Question 23 Report
Use the diagram to answer the question that follows
The flower of plants belongs to part labelled
Answer Details
The flower is the reproductive organ of a plant. It is a plant organ, which is defined as a group of tissues that work together to perform a specific function.
Question 24 Report
Bryophyte is an intermediate group between higher algae and
Answer Details
Bryophytes are an intermediate group between higher algae and pteridophytes. Let's break this down to understand why.
Bryophytes include plants like mosses and liverworts. They are often referred to as the simplest form of land plants because they are non-vascular, meaning they do not have specialized tissues, like xylem and phloem, for water and nutrient transport. Instead, they rely on diffusion, which limits their size and requires them to live in moist environments.
On the other hand, pteridophytes are a group of plants that include ferns and are the next step up in complexity from bryophytes. They are important in this context because they mark the transition from non-vascular bryophytes to vascular plants (plants with vascular systems).
Why is this important? This transition is crucial because it represents the evolution of plants from simple, water-dependent organisms to more complex and diverse forms that can live in a wider range of environments, thanks to their vascular systems.
In summary, bryophytes serve as an evolutionary bridge between the simpler algae and the more complex pteridophytes due to their similarities and differences in structure and reproduction.
Question 25 Report
Darwin's theory of evolution is based on the principle of
Answer Details
Darwin's theory of evolution is based on the principle of natural selection. This concept explains how species change over time in response to their environment.
Here's a simple way to understand it: In any given environment, there are more individuals born than can survive. These individuals vary slightly in their traits, such as color, size, speed, etc. Some of these variations might give an individual a slight edge in the environment, helping them to survive better or reproduce more than others. For example, a faster rabbit might escape predators more successfully than slower ones.
These advantageous traits are more likely to be passed down to the next generation. Over many generations, these beneficial traits become more common in the population. This process is known as natural selection because it "selects" the traits that best suit the environment. Consequently, the species slowly evolves and adapts to their surroundings.
The key point is that natural selection is a gradual process driven by the survival and reproduction of individuals with favorable traits in a specific environment. Unlike the other options, it doesn't rely on the use or disuse of organs, the inheritance of acquired characteristics during an individual's life, or sudden genetic changes known as mutations.
Question 26 Report
The part of the inner ear that is responsible for hearing is
Answer Details
The part of the inner ear that is responsible for hearing is the cochlea.
The cochlea is a spiral-shaped, fluid-filled structure that looks a little like a snail shell. Its primary function is to convert sound waves from the air into electrical signals that can be interpreted by the brain as sound. Here's how it works:
Thus, the cochlea plays an essential role in the process of hearing by transforming sound vibrations into nerve impulses that the brain can understand.
Question 27 Report
The oxygen transported to all parts of the body during blood circulation is used for the
Answer Details
The oxygen that is transported to all parts of the body during blood circulation is primarily used for the release of energy from food. This process is also known as cellular respiration.
Here's how it works:
Thus, the presence of oxygen is vital for cells to convert the energy stored in food into a form that can be used for all activities, from metabolic processes to muscle contraction. In summary, the primary purpose of oxygen transportation during blood circulation is for the release of energy from food, which is essential for maintaining life and performing all physiological functions.
Question 28 Report
In glycolysis, glucose is broken down through series of reactions in the presence of enzyme and absence of oxygen to produce
Answer Details
Glycolysis is a biochemical process through which glucose, a six-carbon sugar, is broken down into two molecules of a three-carbon compound called **pyruvic acid** or **pyruvate**. This process occurs in the **absence of oxygen** and is also referred to as anaerobic respiration. During glycolysis, energy stored in glucose is released, and a net gain of **two molecules of ATP (adenosine triphosphate)** is produced, which serves as a direct energy source for cellular activities.
Here is a brief explanation of the main steps involved in glycolysis:
In summary, during glycolysis in the absence of oxygen, glucose is transformed into **pyruvic acid and a net gain of ATP molecules**, making the answer **pyruvic acid + ATP**.
Question 29 Report
The total number of ATP produced during glycolysis is
Answer Details
Glycolysis is the process through which one molecule of glucose is broken down into two molecules of pyruvate, and this process occurs in the cytoplasm of the cell. During glycolysis, two different phases are involved: the energy investment phase and the energy payoff phase. Let's break it down:
Energy Investment Phase: At the start of glycolysis, the cell uses 2 ATP molecules. This phase is necessary to modify the glucose molecule and prepare it for the subsequent reactions.
Energy Payoff Phase: As glycolysis continues, 4 ATP molecules are produced. These ATP molecules are formed when certain intermediates donate phosphate groups to ADP (adenosine diphosphate) to form ATP.
Hence, the net gain of ATP during the glycolytic process is calculated by subtracting the ATP used in the Energy Investment phase from those produced in the Energy Payoff phase.
The calculation is as follows:
ATP Produced = 4 molecules
ATP Used = 2 molecules
Net Gain = 4 - 2 = 2 molecules
Therefore, the total number of ATP produced during glycolysis, when considering the net gain, is 2 molecules of ATP.
Question 30 Report
Gaseous exchange takes place through the plasma membrane in
Answer Details
Gaseous exchange is a biological process through which different gases are transferred in opposite directions across a specialized respiratory surface. When it comes to simple organisms, this exchange can occur directly through the plasma membrane. The organism where gaseous exchange takes place through the plasma membrane is the paramecium.
Here is a simple explanation:
In conclusion, paramecium utilizes its plasma membrane for gaseous exchange due to its single-celled structure, allowing direct diffusion of gases.
Question 31 Report
The urinary tubules opens into a proximal convoluted tubule coils to form distal by making a
Answer Details
The urinary tubules are part of the nephron, which is the basic functional unit of the kidney. Each nephron has several segments, including the proximal convoluted tubule, the loop of Henle, the distal convoluted tubule, and the collecting duct.
After the proximal convoluted tubule, the nephron forms a loop known as the loop of Henle. This loop dips down into the medulla of the kidney and is crucial for concentrating urine and maintaining water balance. The form that this loop takes is best described as a U-shaped loop. This shape is because the loop of Henle descends, makes a turn, and then ascends, forming a ‘U’ as it transitions eventually into the distal convoluted tubule.
Therefore, the correct description of the transition from the proximal convoluted tubule to the distal convoluted tubule, via the loop of Henle, is through a U-shaped loop.
Question 32 Report
The organisms that adopt swarming as an adaptation to overcome overcrowding are
Answer Details
Among the organisms listed, termites are well-known for adopting swarming as an adaptation to overcome overcrowding.
Here's why:
Swarming in termites is a crucial natural strategy that allows them to efficiently manage their population and ensure the survival and expansion of their colonies.
Question 33 Report
The food nutrient with the highest energy value is
Answer Details
The food nutrient with the highest energy value is lipids, which include fats and oils.
The reason lipids have the highest energy value is due to their chemical structure. They contain long chains of carbon and hydrogen atoms, which can store a significant amount of energy. When these bonds are broken down in the body, they release energy.
In terms of energy measurement, lipids provide about 9 calories per gram, whereas proteins and carbohydrates each provide about 4 calories per gram. Minerals do not provide energy but are essential for other bodily functions.
Therefore, lipids are more energy-dense and offer more energy per gram compared to other nutrients. This is why they are considered the food nutrient with the highest energy value.
Question 34 Report
Which of the following evidences of evolution employs the use of radio-isotope dating?
Answer Details
The evidence of evolution that employs the use of radio-isotope dating is fossil records.
Let me explain this further. Fossils are the preserved remains or traces of organisms that lived in the past. Scientists use fossils to understand the history of life on Earth and how species have changed over time. But to make meaningful conclusions, they need to know the age of these fossils.
This is where radio-isotope dating comes into play. Radio-isotope dating, also known as radiometric dating, is a technique used to determine the age of rocks and fossils. It measures the decay of radioactive isotopes in materials.
Here's a simple way to understand it: you can think of radioactive isotopes as tiny clocks contained within rocks and fossils. These isotopes decay at a constant rate over time. By measuring the amount of remaining isotopes and knowing their half-life (the time it takes for half of the isotopes to decay), scientists can calculate how long the isotopes have been decaying. This gives them the age of the fossil or rock, helping to place it in the context of Earth's history.
In conclusion, fossil records are the evidence of evolution that utilize radio-isotope dating to provide a time frame and chronological context for evolutionary events.
Question 35 Report
The type of variation where there are no remarkable differences between the two extreme individuals is called
Answer Details
The type of variation where there are no remarkable differences between the two extreme individuals is called continuous variation.
In biology, variation refers to the differences among individuals within a population. When we refer to continuous variation, we're talking about traits that are measured on a scale and show a range of small differences between individuals. An example is human height or weight. In these cases, individuals do not fall into a finite or distinct number of categories, but rather display a smooth and gradual transition across a range.
This type of variation typically results from the combined effects of many genes (polygenic inheritance) and the influence of environmental factors. It presents as a continuous range of expression, forming a bell-shaped curve when graphed, rather than discrete categories. Because of this smooth transition without sharp differences, it's termed as continuous variation.
Question 36 Report
The rhizoid of liverwort is
Answer Details
The rhizoid of liverwort is unicellular and unbranched.
Here's a simple explanation: Liverworts are a type of non-vascular plant that have structures called rhizoids. These rhizoids look like tiny hairs and they help the plant attach to surfaces like rocks or soil. Even though they help with attachment, they do not have the complexity of true roots.
In liverworts, these rhizoids are formed as single cells, which means they are unicellular. Think of them as being like a single long cell that looks like a hair. This single-celled structure is unbranched, meaning it doesn't split or divide into more parts or sections.
In summary, liverwort rhizoids are unicellular and unbranched, helping them secure the plant to various surfaces without forming complex root structures.
Question 37 Report
Reproduction in paramecium is by
Answer Details
Paramecium is a single-celled organism that belongs to the group of protists known as ciliates. The primary method of reproduction in paramecium is through binary fission. Let's break down what that means:
Binary Fission: This is a type of asexual reproduction, which means it does not involve the fusion of gametes (sperm and egg). Instead, it is a simple division process in which the organism creates a copy of itself. Here is how it works in paramecium:
This process of binary fission allows paramecia to reproduce quickly and efficiently, leading to exponential population growth under favorable conditions. Unlike other methods like budding, spore formation, or fragmentation, binary fission is a straightforward division of the cell into two identical parts.
Conclusion: Paramecium reproduces mainly by binary fission, a type of asexual reproduction that results in two genetically identical offspring from a single parent organism.
Question 38 Report
The causative agent of tuberculosis is
Answer Details
Tuberculosis, often abbreviated as TB, is a disease that primarily affects the lungs, although it can spread to other parts of the body. The **causative agent** of tuberculosis is a specific type of **bacteria** known as Mycobacterium tuberculosis.
To understand this better, let's break it down:
When someone with active tuberculosis coughs, sneezes, or even speaks, the bacteria can be spread through the air and inhaled by others, leading to new infections. This is why tuberculosis is described as a **contagious** disease.
Understanding that tuberculosis is caused by **bacteria** is crucial for its treatment and prevention. Antibiotics, which are medicines that specifically target bacterial infections, are used to treat and control the spread of tuberculosis.
In summary, it's important to recognize that tuberculosis is caused by a specific type of bacteria called Mycobacterium tuberculosis, which explains why antibiotics can be effective in its treatment.
Question 39 Report
Answer Details
In a genetic cross, when we have a heterozygous red flower plant (Rr) and a white flowered plant (rr), we can use a Punnett square to determine the probability of each possible genotype of the offspring.
The parent genotypes are:
We can set up a Punnett square with the following alleles:
r | r | |
---|---|---|
R | Rr | Rr |
r | rr | rr |
From the table, we can see the following possible outcomes for the offspring:
Therefore, the probability that the offspring will be Rr is 2 out of 4 (or 1/2).
Question 40 Report
In blood transfusion, a patient with group AB receives
Answer Details
In blood transfusion, a patient with blood type **AB** is known as a **universal recipient**. This means they can receive red blood cells from any blood group. This is because:
Therefore, a person with blood type AB can safely receive red blood cells from **donors with A, B, AB, and O blood types**. This is because:
Therefore, a patient with blood type AB can receive blood from donors with **group O, A, B, or AB**.
Would you like to proceed with this action?