Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
If Q is[9−2−74]
, then |Q| is
Answer Details
To find |Q|, we need to take the determinant of the matrix Q and then take its absolute value. So, we have: |Q| = |9 -2 -7| |-2 0 -4| |-7 -4 0| Expanding along the first row, we get: |Q| = 9(0 - (-4)) - (-2)(-4 - (-7)) - (-7)(-4 - 0) |Q| = 36 - 2(3) + 28 |Q| = 59 Therefore, the correct option is (D) 50.
Question 2 Report
Each of the interior angles of a regular polygon is 140o. Calculate the sum of all the interior angles of the polygon
Answer Details
In a regular polygon, all the interior angles have the same measure. Let n be the number of sides of the polygon, then we have: sum of all interior angles = (n - 2) x 180 degrees Each interior angle of the polygon is given as 140 degrees. Since the polygon is regular, it follows that all its interior angles are congruent. Hence, we can set up an equation involving the interior angle and solve for the number of sides n. In a regular polygon with n sides, the sum of the interior angles is given by: sum of all interior angles = n x (interior angle) Substituting the given value of the interior angle, we have: sum of all interior angles = n x 140 degrees We can now equate the two expressions for the sum of all interior angles: (n - 2) x 180 degrees = n x 140 degrees Expanding and simplifying the left side, we get: 180n - 360 = 140n Adding 360 to both sides and simplifying, we have: 40n = 360 Therefore, n = 9. Hence, the given polygon has 9 sides. Now, substituting this value of n in the expression for the sum of all interior angles, we have: sum of all interior angles = 9 x 140 degrees = 1260 degrees Therefore, the sum of all the interior angles of the given polygon is 1260 degrees. In conclusion, the answer is option (B) 1260 degrees.
Question 3 Report
If m * n = n - (m+2) for any real number m and n find he value of 3*(-5)
Answer Details
m * n = n - (m+2)
= -5 - (3+2)
= -5-5
= -10
Question 4 Report
Determine the value of x for which (x2 - 1) > 0
Answer Details
To find the value of x for which (x^2 - 1) > 0, we need to factorize the expression. (x^2 - 1) can be written as (x - 1)(x + 1). So now we have: (x - 1)(x + 1) > 0 For the product of two factors to be greater than zero, either both factors must be positive or both factors must be negative. If (x - 1) and (x + 1) are both positive, then x > 1. If (x - 1) and (x + 1) are both negative, then x < -1. Therefore, the solution is: x < -1 or x > 1 which means option (A) is the correct answer.
Question 5 Report
If P =[x+3x+2x+1x−1] evaluate x if |P| = -10
Answer Details
P=[x+3x+2x+1x−1]
evaluate x if |P| = -10
(x+3)(x-1) - {(x+1)(x+2)} = -10
x2 - x + 3x - 3 - {x2 + 2x + x + 2} = -10
x2 + 2x - 3 - {x2 + 3x + 2} = -10
-x - 5 = -10
-5 + 10 = x
5 = x
∴x = 5
Question 6 Report
If x = {n2+1:n is a positive integer and 1 ≤ n ≤ 5}, y = {5n:n is a positive integer and 1 ≤ n ≤ 5}, find x ∩ y.
Answer Details
To find the intersection of two sets, we need to find the elements that are common to both sets. First, let's find the elements of set x: x = {n2 + 1 : 1 ≤ n ≤ 5} If we substitute each value of n from 1 to 5 into the formula n2 + 1, we get the following values for set x: x = {2, 5, 10, 17, 26} Now, let's find the elements of set y: y = {5n : 1 ≤ n ≤ 5} If we multiply each value of n from 1 to 5 by 5, we get the following values for set y: y = {5, 10, 15, 20, 25} To find the intersection of sets x and y, we need to find the elements that are common to both sets. From the values listed above, we can see that the elements 5 and 10 are in both sets x and y. Therefore, the intersection of x and y is: x ∩ y = {5, 10} Therefore, the correct option is {5, 10}.
Question 7 Report
If the hypotenuse of a right angle-triangle isosceles triangle is 2cm. What is the area of the triangle?
Answer Details
In an isosceles right triangle, the two legs have the same length, which is equal to √2 times the length of one of the legs. Let's assume that each leg has a length of x, then the hypotenuse (which is 2 cm in this case) can be expressed as: x√2 = 2 Solving for x, we get: x = 2/√2 = √2 The area of an isosceles right triangle can be found by dividing the product of the two legs by 2, so the area in this case would be: (√2 * √2)/2 = 1 cm² Therefore, the correct answer is: - 1 cm²
Question 8 Report
Which of the following equations represent the graph above?
Answer Details
x = -2 and x = 1/4
x = -2 and 4x = 1
x+2 and 4x-1
(x+2)(4x-1) = 0
4x2 - x + 8x -2 = 0
4x2 + 7x – 2 = 0 but y intercept is positive. Multiply the equation by -1
-4x2 - 7x + 2 = 0
∴y = 2 – 7x – 4x2
Question 9 Report
What is the mean deviation of x, 2x, x+1 and 3x. If their mean is 2?
Answer Details
The first step to finding the mean deviation is to calculate the mean of the given numbers. We are told that the mean of x, 2x, x+1, and 3x is 2. So, we can write an equation: (x + 2x + x+1 + 3x)/4 = 2 Simplifying this equation, we get: 7x/4 = 2 Multiplying both sides by 4/7, we get: x = 8/7 Now we can substitute this value of x back into the original numbers: x = 8/7 2x = 16/7 x+1 = 15/7 3x = 24/7 Next, we need to find the absolute deviation of each number from the mean: |x - 2| = |8/7 - 2| = 6/7 |2x - 2| = |16/7 - 2| = 2/7 |x+1 - 2| = |15/7 - 2| = 1/7 |3x - 2| = |24/7 - 2| = 10/7 The mean deviation is the average of these absolute deviations: (6/7 + 2/7 + 1/7 + 10/7)/4 = 19/28 Therefore, the mean deviation of the given numbers is 19/28. The answer closest to 19/28 among the options provided is 0.5. Therefore, the answer is (A) 0.5.
Question 10 Report
The probability of a student passing any examination is 2/3. If the students takes three examination, what is the probability that he will not pass any of them
Answer Details
P(pass) = 2/3
P(not pass) = 1 - 2/3 = 1/3
P(not passing any of the 3 Exams) = 1/3 x 1/3 x 1/3
= 1/27
Question 11 Report
The distance travelled by a particle from a fixed point is given as s = (t3 - t2 - t + 5)cm. Find the minimum distance that the particle can cover from the fixed point.
Answer Details
The distance travelled by the particle is given by the function s = t^3 - t^2 - t + 5. To find the minimum distance that the particle can cover from the fixed point, we need to find the minimum value of this function. Taking the derivative of s with respect to t, we get s' = 3t^2 - 2t - 1. Setting s' equal to zero and solving for t, we get t = (2 ± √10)/3. To determine whether this critical point is a minimum or maximum, we need to check the second derivative of s. Taking the derivative of s' with respect to t, we get s'' = 6t - 2. When t = (2 + √10)/3, we have s'' > 0, which means that this critical point corresponds to a minimum. Therefore, the minimum distance that the particle can cover from the fixed point is achieved when t = (2 + √10)/3. Substituting this value of t into the function s, we get s_min = s((2 + √10)/3) = (16 - 8√10 + 27√10 - 25)/27 = (-9 + 19√10)/27 ≈ 0.463 cm. Therefore, the correct option is not listed as it is approximately 0.463 cm.
Question 12 Report
W is directly proportional to U. If w = 5 when U = 3, find when W = 2/7
Question 13 Report
In the figure above , Ts//xy and XY = TY, ∠SYZ = 34∘
, ∠TXY = 47∘
, find the angle marked n
Answer Details
In Δ TYX
XY = TY ∴y =47∘
base ∠s of ISCΔ
But y+x+34+47 = 180 interior
opposite ∠s are supplementary
47 + x + 34 + 47 = 180
x + 128= 180
x = 180- 128
x = 52∘
Question 14 Report
A polynomial in x whose roots are 4/3 and -3/5 is
Answer Details
If 4/3 and -3/5 are roots of a polynomial
Imply x = 4/3 and - 3/5
3x = 4 and 5x = -3
∴3x-4 = 0 and 5x+3 = 0 are factors
(3x-4)(5x+3) = 0 product of the factors
15x2 + 9x – 20x – 12 = 0 By expansion
15x2 - 11x – 12 = 0
Question 15 Report
A regular polygon has 150∘ as the size of each interior angle. How many sides does it have?
Answer Details
A regular polygon has equal interior angles and equal sides. The sum of the interior angles of a polygon with n sides is (n-2) times 180 degrees. So, if a regular polygon has interior angles of 150 degrees, we can use this formula to find the number of sides: (n-2) x 180 = sum of interior angles of the polygon (n-2) x 180 = 150n Simplifying the equation: n - 2 = 150/180 * n n - 2 = 5/6 * n n = 12 Therefore, the regular polygon has 12 sides. Answer: 12.
Question 16 Report
Simplify 7112−434+212
Answer Details
Question 17 Report
A binary operation ⊗ defined on the set of integers is such that m⊗n = m + n + mn for all integers m and n. Find the inverse of -5 under this operation, if the identity element is 0
Answer Details
To find the inverse of -5 under this operation, we need to find an integer x such that -5⊗x = 0, where 0 is the identity element. Using the given binary operation, we know that m⊗n = m + n + mn. Substituting -5 for m and x for n, we get: -5⊗x = -5 + x - 5x = -4x - 5 We need to solve -4x - 5 = 0 for x. Adding 5 to both sides gives: -4x = 5 Dividing both sides by -4 gives: x = -5/4 Therefore, the inverse of -5 under this operation is -5/4. So, the correct option is: -5/4
Question 18 Report
In how many ways can 9 people be seated if 3 chairs are available
Answer Details
If there are 9 people and 3 chairs, the first person can choose any of the 9 chairs. After the first person has chosen their seat, there are only 8 chairs left for the second person to choose from. Once the second person has chosen their seat, there are only 7 chairs left for the third person to choose from. Therefore, the total number of ways in which 3 people can be seated in 9 chairs is: 9 x 8 x 7 = 504 Therefore, the answer is 504, which is option (B).
Question 19 Report
Find the radius of a sphere whose surface area is 154 cm2
Answer Details
The surface area of a sphere is given by the formula: A = 4πr^2 where A is the surface area and r is the radius of the sphere. In this problem, we are given the surface area of the sphere, which is 154 cm^2. We can use this information to find the radius of the sphere. We start by rearranging the formula to solve for r: r = √(A/4π) Plugging in the value of A = 154 cm^2, we get: r = √(154/4π) ≈ 3.5 cm Therefore, the radius of the sphere is approximately 3.5 cm. So, the correct answer to this problem is option B: 3.50 cm.
Question 20 Report
In how many ways can a delegation of 3 be chosen from 5 men and 3 women. If at least 1 man and 1 woman must be included?
Answer Details
Question 21 Report
The histogram above represents the number of candidates that sat for Mathematics examination in a school. How many candidate scored more than 50 marks?
Answer Details
MarkNo.ofCandidate6040702580159010100595
Question 23 Report
Simplify 5+√73+√7
Answer Details
To simplify the expression $\frac{5+\sqrt{7}}{3+\sqrt{7}}$, we need to rationalize the denominator. To do this, we can multiply the numerator and denominator by the conjugate of the denominator, which is $3-\sqrt{7}$. This gives us: $$\frac{5+\sqrt{7}}{3+\sqrt{7}}\cdot\frac{3-\sqrt{7}}{3-\sqrt{7}}=\frac{(5+\sqrt{7})(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})}=\frac{15-5\sqrt{7}+3\sqrt{7}-7}{9-7}$$ Simplifying the numerator and denominator gives: $$\frac{8-2\sqrt{7}}{2}=\boxed{4-\sqrt{7}}$$ Therefore, $\frac{5+\sqrt{7}}{3+\sqrt{7}}$ simplifies to $4-\sqrt{7}$.
Question 24 Report
Find the value of x in the diagram.
Answer Details
30 + x = 100
x = 100 - 30
= 70o
Question 25 Report
Find the range of values of x for which 3x - 7 ≤ 0 and x + 5 > 0
Answer Details
To solve this inequality, we need to work with each inequality separately and then find the values of x that satisfy both. Starting with the first inequality: 3x - 7 ≤ 0 Adding 7 to both sides: 3x ≤ 7 Dividing by 3: x ≤ 7/3 Now, let's work with the second inequality: x + 5 > 0 Subtracting 5 from both sides: x > -5 To satisfy both inequalities, x must be greater than -5 and less than or equal to 7/3. Therefore, the range of values for x is: -5 < x ≤ 7/3
Question 26 Report
Solve 52(x-1) x 5(x-1) = 0.04
Answer Details
52(x-1) x 5(x-1) = 0.04
52x-2 x 5x-1 = 4/100
52x-2 + x-1 = 1/25
53x-1 = 1/52
53x-1 = 5-2 (Equating the indices)
3x-1 = -2
3x = -2+1
3x = -1
X = -1/3
Question 27 Report
A chord drawn 5 cm away from the center of a circle of radius 13 cm. Calculate the length of the chord
Answer Details
x2 + 52 = 132
x2 + 25 = 169
x2 = 144
x = √ 144
= 12
Length of the chord AB = 2x
2*12= 24cm
Question 28 Report
Evaluate ∫sec2θ dθ
Answer Details
∫sec2θ dθ = ∫ 1/cos2 dθ
∫(cos)-2 dθ,
let u = cos θ
∴∫u-2 = 1/u + c
∫cos θ = sin θ + c
∫sec-2θ = 1/u sin θ + c
= (sinθ / cosθ) + c
= Tan θ + c
Question 29 Report
Find to infinity, the sum of the sequence 1,910,(910)2,(910)3,.....
Answer Details
Question 30 Report
I.S∩T∩W=S II. S∪T∪W=S
III. T∩W=S
If S⊂T⊂W, which of the above statements are true?
Answer Details
S∩T∩W = S(This means that all the elements of s are in T and also in W.)
S∪T∪W = W (imply W is a universal set for S and T) T∩W = S imply all the elements of S are in T and W)
S ⊂ T ⊂ W
∴ I, II, and III
Question 31 Report
No. of days | 1 | 2 | 3 | 4 | 5 | 6 |
No. of students | 20 | x | 50 | 40 | 2x | 60 |
The distribution above shows the number of days a group of 260 students were absents from school in a particular term. How many students were absent for at least four days in the term
Answer Details
20 + X + 50 + 40 + 2X + 60 = 260
3X + 170 = 260
3X = 260 - 170
3x = 90
x = 30
Absent for at least 4 days
4 | 5 | 6 |
40 | 2x | 60 |
Question 32 Report
A cliff on the bank of a river is 300 meter high. if the angle of depression of a point on the opposite side of the river is 60∘ , find the width of the river.
Answer Details
We can solve this problem using trigonometry. Let's draw a diagram of the situation:
A /| / | / | h = 300 m / | ----------- x B
Where point A is the top of the cliff, point B is the unknown point on the opposite side of the river, and x is the width of the river.
We know that the angle of depression from A to B is 60 degrees. This means that the angle of elevation from B to A is also 60 degrees.
Using trigonometry, we can set up the following equation:
tan(60) = h / x
where h is the height of the cliff and x is the width of the river. We can solve for x:
x = h / tan(60) x = 300 / √3 x = 100√3 meters
Therefore, the width of the river is 100√3 meters. Answer is correct.
Question 33 Report
5, 8, 6 and k occur with frequency 3, 2, 4, and 1 respectively an d have a mean of 5.7. Find the value of k
Answer Details
The mean of the given numbers is 5.7. Mean = (sum of all numbers) / (total number of numbers) Therefore, (5*3 + 8*2 + 6*4 + k*1) / (3+2+4+1) = 5.7 Simplifying the above equation, we get: (15 + 16 + 24 + k) / 10 = 5.7 55 + k = 57 k = 2 Therefore, the value of k is 2.
Question 34 Report
The pie chart above represents 400 fruits on display n a grocery store. How many apples are in the store
Answer Details
Question 35 Report
Evaluate 81.81+99.4420.09+36.16 correct to 3 significant figures.
Answer Details
To evaluate the expression: $$\frac{81.81 + 99.44}{20.09 + 36.16}$$ We simply substitute the numbers in the formula and calculate: $$\frac{81.81 + 99.44}{20.09 + 36.16} = \frac{181.25}{56.25} \approx \boxed{3.23}$$ Therefore, the expression evaluates to approximately 3.23.
Question 36 Report