Nkojọpọ....
|
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
|
Tẹ ibi lati pa |
|||
Ibeere 1 Ìròyìn
The part of the brain that receives sensory impulses of smell is the
Awọn alaye Idahun
The part of the brain that receives sensory impulses of smell is the olfactory lobe. When you perceive a scent, information from the nose's sensory cells is sent to the olfactory lobe, and it is here that the brain begins the process of identifying the fragrance. The olfactory bulb is the first region that processes smell sensory data, allowing you to discern various odors. Other parts of the brain, like the cerebrum, help process and associate these smells with memories or emotions, but the olfactory lobe is the initial receiver of these sensory signals related to smell.
Ibeere 2 Ìròyìn
The changes of living organisms over generation is referred to as
Awọn alaye Idahun
The process by which living organisms change over generations is referred to as organic evolution. This concept explains how species undergo gradual change over long periods of time, which can ultimately result in the emergence of new species. These changes are brought about by mechanisms such as mutation, natural selection, gene flow, and genetic drift. As a result, populations of organisms adapt to their environments and can become better suited to survive and reproduce. The concept of organic evolution is a fundamental principle in biology, as it helps us understand the history of life on Earth and the shared ancestry of all living organisms.
Ibeere 3 Ìròyìn
A community with a population of two million three hundred and ten thousand people living in an area of two thousand three hundred and ten square kilometres has a population density of
Awọn alaye Idahun
To calculate the population density of a region, you need to divide the **total population** by the **area** they are living in. This will give you the number of people per unit area, typically per square kilometer in this case.
Given:
The formula for population density is:
Population Density = Total Population / Area
By plugging in the given values:
Population Density = 2,310,000 / 2,310 = 1,000
This means there are **1,000 people per square kilometer** in this community. Therefore, the correct population density is **1,000**.
Ibeere 4 Ìròyìn
Bilateral symmetry,cylindrical bodies and double openings are characteristic features of
Awọn alaye Idahun
The features you mentioned, namely bilateral symmetry, cylindrical bodies, and double openings, are characteristic of nematodes.
Let's break it down further:
In contrast:
Therefore, based on these descriptions, nematodes clearly align with the features of bilateral symmetry, cylindrical bodies, and double openings.
Ibeere 5 Ìròyìn
The rhizoid of liverwort is
Awọn alaye Idahun
The rhizoid of liverwort is unicellular and unbranched.
Here's a simple explanation: Liverworts are a type of non-vascular plant that have structures called rhizoids. These rhizoids look like tiny hairs and they help the plant attach to surfaces like rocks or soil. Even though they help with attachment, they do not have the complexity of true roots.
In liverworts, these rhizoids are formed as single cells, which means they are unicellular. Think of them as being like a single long cell that looks like a hair. This single-celled structure is unbranched, meaning it doesn't split or divide into more parts or sections.
In summary, liverwort rhizoids are unicellular and unbranched, helping them secure the plant to various surfaces without forming complex root structures.
Ibeere 6 Ìròyìn
The bacteria in the large intestine of man synthesizes
Awọn alaye Idahun
The large intestine of humans is home to a diverse community of beneficial bacteria. These bacteria primarily synthesize vitamins, particularly vitamin K and some of the B vitamins, such as B12. They do not typically produce minerals or glucose.
Here's a simple breakdown:
Thus, the correct and simplest answer is that the bacteria in the large intestine primarily synthesize vitamins.
Ibeere 7 Ìròyìn
The formation of cilia and flagella in living cells is carried out with the help of
Awọn alaye Idahun
The formation of cilia and flagella in living cells is primarily carried out with the help of centrioles.
In eukaryotic cells, cilia and flagella are long, hair-like structures that extend from the surface of the cell and are responsible for movement. They are made up of microtubules, which are protein structures. The base of a cilium or a flagellum is anchored to a cell by a structure called the basal body.
The basal body is very similar in structure to a centriole. Centrioles are cylinder-shaped organelles found in animal cells and are composed of microtubule triplets. When a cell is ready to produce cilia or flagella, the centrioles migrate to the surface of the cell and become basal bodies by aiding in the assembly and organization of these microtubules.
Therefore, the role of centrioles is crucial because they act as the organizing centers for the microtubule structures that comprise cilia and flagella. Without centrioles, a cell would not be able to form these important structures.
Ibeere 8 Ìròyìn
A succession that occurs in an area where there are no pre-existing community is called
Awọn alaye Idahun
A succession that occurs in an area where there is no pre-existing community is called Primary Succession.
To understand this, imagine a barren landscape where life has never existed before, such as a newly formed volcanic island or a region uncovered by a retreating glacier. In such places, there are no soils or organisms present initially. Here’s how it happens:
In summary, primary succession describes the process of life gradually establishing itself from scratch in an environment that starts with no life or soil, forming an ecosystem over time.
Ibeere 9 Ìròyìn
In vascular plants, xylem tissue is responsible for
Awọn alaye Idahun
In vascular plants, the xylem tissue is primarily responsible for the transportation of water. The xylem functions like a network of tubes spreading throughout the plant, from the roots up to the leaves. Its main role is to carry water and dissolved minerals absorbed from the soil by the roots to other parts of the plant. This movement of water is crucial for maintaining plant health as it supports essential processes like photosynthesis and nutrient distribution. Unlike other tissues, xylem is specifically adapted for this task, with its elongated, tube-like structures which provide an effective passage for water movement.
Ibeere 10 Ìròyìn
Which of the Nigeria states is Northern guinea savanna located?
Awọn alaye Idahun
The **Northern Guinea Savanna** is an ecological zone in Nigeria characterized by a mixture of grasslands and scattered trees. This vegetation belt lies between the Sudan Savanna in the north and the Southern Guinea Savanna in the south. The vegetation in this region is adapted to longer wet seasons compared to the Sudan Savanna and shorter ones compared to the Southern Guinea Savanna.
Among the states listed, **Kwara State** is where the **Northern Guinea Savanna** is located. Kwara is positioned in the north-central part of Nigeria, which aligns with the geographical location of the Northern Guinea Savanna. It features the characteristic landscape of mixed grasslands and trees, supporting both agriculture and livestock rearing.
In contrast, **Borno and Kano** are located further north, closer to or within the Sudan Savanna zone, which is more arid. **Oyo state**, on the other hand, is located in the southwestern part of Nigeria and is part of the forested regions or the Southern Guinea Savanna, which receives more rainfall and supports more dense vegetation compared to the Northern Guinea Savanna.
Thus, the correct answer is **Kwara State** as it lies within the **Northern Guinea Savanna** ecological zone.
Ibeere 11 Ìròyìn
In which zone of the marine habitat does the organisms require adaptation for attachment?
Awọn alaye Idahun
The marine habitat is divided into various zones, each with its own environmental conditions and challenges for the organisms living there. Among these zones, the intertidal zone is the one where organisms require significant adaptation for attachment. The intertidal zone is the area that is exposed to the air at low tide and submerged under water at high tide.
The main reasons organisms need adaptations for attachment in this zone are:
Therefore, the intertidal zone specifically requires organisms to have adaptations that ensure they remain securely attached despite the dynamic and challenging conditions encountered daily.
Ibeere 12 Ìròyìn
The part of the kidney where the selective reabsorption takes place is
Awọn alaye Idahun
The part of the kidney where selective reabsorption takes place is the Henle's loop, also known as the Loop of Henle.
Here's a simple explanation:
The kidneys are responsible for filtering blood, removing waste, and balancing bodily fluids. This is accomplished through structures called nephrons, each of which functions like a tiny processing plant. A nephron comprises various parts, including the glomerulus, Bowman's capsule, and the Loop of Henle.
Initially, blood is filtered in the glomerulus, and the resulting fluid then enters the Bowman's capsule. However, this fluid contains essential nutrients and ions that our body needs. Therefore, it must be reabsorbed back into the bloodstream.
The Loop of Henle plays a critical role in this reabsorption process. It creates a concentration gradient that allows water, sodium, chloride ions, and other substances to be reabsorbed selectively into the blood. This ensures that vital nutrients and electrolytes are not lost in the urine.
The Henle's loop is integral in forming concentrated urine, enabling the body to conserve water and important nutrients while still eliminating waste effectively. Thus, it is the site where selective reabsorption primarily occurs.
Ibeere 13 Ìròyìn
The resemblance of an organism to another organism as means of enhancing it's chances of survival in its habitat is known as
Awọn alaye Idahun
The phenomenon you are referring to is called mimicry. Mimicry occurs when one organism, known as the mimic, evolves to resemble another organism, called the model, in order to gain some advantage. This resemblance can help the mimic improve its chances of survival within its habitat.
Mimicry typically involves visual similarities, although it can also extend to auditory, olfactory, or behavioral traits. By mimicking another organism, the mimic may benefit in various ways, such as avoiding predators, enhancing foraging success, or improving reproductive opportunities.
For example, some harmless species may mimic the appearance of dangerous or unpalatable species to deter predators, while others might conceal themselves by resembling the environment or other benign organisms. This strategy not only helps them evade threats but sometimes aids in approaching prey. Overall, mimicry is a powerful evolutionary adaptation that plays a crucial role in the survival of many species.
Ibeere 14 Ìròyìn
Which of the following structures enables the exchange of gases in insects?
Awọn alaye Idahun
Insects have a specialized system for gas exchange, which does not rely on their skin like some other small organisms. Instead, they use a system known as the tracheal system. This system consists of a network of tiny tubes called tracheae.
The tracheae are the main structures that enable the exchange of gases in insects. These tubes extend throughout an insect's body and open to the outside through small openings on the insect's exoskeleton called spiracles.
When an insect breathes, air enters through the spiracles and travels through the tracheae, delivering oxygen directly to the body’s cells. At the same time, carbon dioxide, which is a waste product of respiration, exits the cells via the same tracheal system, leaving the body through the spiracles.
The tracheal system is highly efficient in distributing air directly to the tissues, bypassing the need for a circulatory system to transport gases throughout the body. As such, it provides a direct and effective way for insects to exchange gases necessary for respiration.
Ibeere 15 Ìròyìn
The feeding relationship between ruminants and the bacteria in their digestive tract is
Awọn alaye Idahun
The feeding relationship between ruminants and the bacteria in their digestive tract is symbiotic. In this type of relationship, both the ruminants and the bacteria benefit from each other.
Here's how it works:
This mutual benefit showcases a symbiotic relationship, where both organisms support each other's survival and wellbeing.
Ibeere 16 Ìròyìn
The food nutrient with the highest energy value is
Awọn alaye Idahun
The food nutrient with the highest energy value is lipids, which include fats and oils.
The reason lipids have the highest energy value is due to their chemical structure. They contain long chains of carbon and hydrogen atoms, which can store a significant amount of energy. When these bonds are broken down in the body, they release energy.
In terms of energy measurement, lipids provide about 9 calories per gram, whereas proteins and carbohydrates each provide about 4 calories per gram. Minerals do not provide energy but are essential for other bodily functions.
Therefore, lipids are more energy-dense and offer more energy per gram compared to other nutrients. This is why they are considered the food nutrient with the highest energy value.
Ibeere 17 Ìròyìn
An instrument used for measuring the intensity of light
Awọn alaye Idahun
The instrument used for measuring the **intensity of light** is a **photometer**.
Let me explain this in a simple way:
A **photometer** is a device that is specifically designed to measure the **strength or intensity** of light. It helps in determining how bright or dim a light source is. These devices are widely used in various fields such as photography, biology, and astronomy where measuring light intensity is crucial. Photometers can measure different wavelengths of light, including visible light, and sometimes UV or infrared light, depending on the type.
For comparison, let’s briefly learn about the other instruments mentioned:
As you can see, none of these instruments are designed to measure light intensity. Therefore, the correct instrument for measuring the **intensity of light** is the **photometer**.
Ibeere 18 Ìròyìn
The cells responsible for transmitting messages to the effectors are
Awọn alaye Idahun
The cells responsible for transmitting messages to the effectors are motor neurons. These neurons play a critical role in the nervous system by transmitting impulses from the central nervous system (such as the brain and spinal cord) towards the muscles and glands, which are collectively known as effectors.
Here's a simple breakdown of how this process works:
Effectors are essential as they perform actions in response to neural signals, making motor neurons integral in generating coordinated movement and various physiological responses. In contrast, sensory neurons carry information from sensory receptors to the central nervous system, relay neurons (interneurons) facilitate communication within the central nervous system, and hair cells are specialized sensory receptors in the auditory and vestibular systems. Thus, the primary role of motor neurons is to convey signals to effectors to initiate a response or action.
Ibeere 19 Ìròyìn
Pentadactyl forelimb of vertebrate function due to differences in environment is
Awọn alaye Idahun
A pentadactyl forelimb in vertebrates, meaning a forelimb with five digits, serves a variety of functions depending on the animal's environment, showcasing how a single basic structure can be adapted through evolution to suit different needs, like swimming, flying, running, or grasping, all while maintaining the underlying five-digit pattern as a result of shared ancestry.
Physiological evidence is an evidence of evolution that deals with the functions of body parts among different species. For example, analogous structures are body parts of different species that have a similar function but can look different.
Moreover, physiological evidence focuses on the specific functional mechanisms and processes that underline the pentadactyl limb's operation while comparative anatomy addresses the evolutionary and anatomical origins of the pentadactyl plan. In other words, Anatomy is the study of the body's physical structure, while physiology is the study of how the body functions.
While both comparative anatomy and physiological evidence can support the concept of the pentadactyl forelimb in vertebrates, the key difference lies in the focus of study: comparative anatomy examines the structural similarities in bone arrangement across different species, whereas physiological evidence investigates how the limb functions and adapts to different behaviours in each species; essentially, comparative anatomy looks at the "blueprint" of the limb, while physiology examines how that structure is used in different contexts.
Embryological evidence of the pentadactyl forelimb of vertebrates includes the regulation of gene expression during limb development.
The fossil record of pentadactyl forelimbs shows that many vertebrates have a similar bone structure, even though their limbs look different on the outside.
Ibeere 20 Ìròyìn
The common examples of trees found in the desert are
Awọn alaye Idahun
Deserts are characterized by their arid conditions, meaning they receive very little rainfall throughout the year. To survive in such environments, plants need special adaptations. Among the plant varieties, the trees commonly found in deserts include **cacti** and the **baobab tree**. Here's a brief explanation of why these trees are well-suited to desert environments:
Plants like **raffia palm**, **coconut**, **white and red mangrove**, and **shea-butter** trees are not typically found in desert environments because they require more moisture and different soil conditions compared to the harsh, dry lands of the desert.
Ibeere 21 Ìròyìn
Lamarck's theory of evolution is based on the idea of
Awọn alaye Idahun
Lamarck's theory of evolution is based on the idea of the inheritance of acquired traits. According to Lamarck, organisms can change during their lifetime by using or not using certain parts of their body. For example, he suggested that if a giraffe stretches its neck to reach higher leaves on trees, its neck will become longer. Furthermore, these traits that were acquired during an organism's lifetime could then be passed down to its offspring. Thus, the next generation would inherit the longer neck, leading to a gradual evolution of longer-necked giraffes over generations. This theory was one of the earliest ideas about evolution, although it has since been largely superseded by Darwin's theory of natural selection.
Ibeere 22 Ìròyìn
In blood transfusion, a patient with group AB receives
Awọn alaye Idahun
In blood transfusion, a patient with blood type **AB** is known as a **universal recipient**. This means they can receive red blood cells from any blood group. This is because:
Therefore, a person with blood type AB can safely receive red blood cells from **donors with A, B, AB, and O blood types**. This is because:
Therefore, a patient with blood type AB can receive blood from donors with **group O, A, B, or AB**.
Ibeere 23 Ìròyìn
Gaseous exchange takes place through the plasma membrane in
Awọn alaye Idahun
Gaseous exchange is a biological process through which different gases are transferred in opposite directions across a specialized respiratory surface. When it comes to simple organisms, this exchange can occur directly through the plasma membrane. The organism where gaseous exchange takes place through the plasma membrane is the paramecium.
Here is a simple explanation:
In conclusion, paramecium utilizes its plasma membrane for gaseous exchange due to its single-celled structure, allowing direct diffusion of gases.
Ibeere 24 Ìròyìn
If the F1 generation allows for self-pollination, what will be the genotypic ratio of the offspring?
Awọn alaye Idahun
To determine the genotypic ratio of the offspring when the F1 generation allows for self-pollination, first understand the process of Mendelian genetics. In a typical monohybrid cross, let's assume two homozygous parents, one dominant (AA) and one recessive (aa). When these two are crossed, the F1 generation will all have the genotype Aa, which is heterozygous.
If we allow the F1 generation (Aa) to self-pollinate, crossing Aa with Aa, the potential genotypes of the offspring can be determined using a Punnett square:
| A | a | |
| A | AA | Aa |
| a | Aa | aa |
From this Punnett square, you can see the possible combinations:
Thus, the genotypic ratio of the offspring is 1 : 2 : 1, which represents one homozygous dominant (AA), two heterozygous (Aa), and one homozygous recessive (aa).
Ibeere 25 Ìròyìn
Which of the following factors can lead to overcrowding?
Awọn alaye Idahun
To understand overcrowding, we need to consider factors that increase or decrease a population within a certain area.
High natality refers to a high birth rate. When more individuals are born in an area than those leaving it, the population will naturally increase, potentially leading to overcrowding as the area becomes inhabited by more individuals than it can comfortably support. This is because more births without corresponding departures or deaths means more people vying for the same resources.
Emigration is the process of individuals moving out of a given area to live elsewhere. This movement decreases the population of an area, which would typically help prevent overcrowding rather than cause it. Hence, emigration does not lead to overcrowding.
Competition involves individuals or species competing for limited resources such as food, water, or territory. While it does not directly cause overcrowding, high population density due to overcrowding can intensify competition since more individuals fight for the same scarce resources. Thus, competition is more of a consequence rather than a direct cause of overcrowding.
High mortality means a high death rate. This reduces the number of individuals in a population, which works against overcrowding. With more individuals dying, the population decreases or stabilizes, alleviating pressures that lead to overcrowding.
In summary, among the listed factors, high natality is the most significant contributor to overcrowding as it directly increases population size when not matched by increased emigration or mortality.
Ibeere 26 Ìròyìn
The oxygen transported to all parts of the body during blood circulation is used for the
Awọn alaye Idahun
The oxygen that is transported to all parts of the body during blood circulation is primarily used for the release of energy from food. This process is also known as cellular respiration.
Here's how it works:
Thus, the presence of oxygen is vital for cells to convert the energy stored in food into a form that can be used for all activities, from metabolic processes to muscle contraction. In summary, the primary purpose of oxygen transportation during blood circulation is for the release of energy from food, which is essential for maintaining life and performing all physiological functions.
Ibeere 27 Ìròyìn
Awọn alaye Idahun
The major buffer in blood is the **bicarbonate buffer system**. The bicarbonate buffer system maintains the pH of the blood and is integral for physiological homeostasis. This system primarily involves **bicarbonate ions (HCO3-)** and works in conjunction with carbonic acid (H2CO3).
In the blood, the bicarbonate buffer system works by a reversible chemical reaction:
CO2 + H2O ⇋ H2CO3 ⇋ HCO3- + H+
Here’s how it functions:
This system is exceptionally effective at buffering rapid changes in pH. The respiratory and renal systems support the bicarbonate buffer system. The lungs regulate the concentration of CO2, and the kidneys control the concentration of HCO3-.
While erythrocytes (red blood cells), leucocytes (white blood cells), and lymph are components of blood, they do not play a primary role in the buffering systems of blood. The bicarbonate buffer system is primarily a chemical buffer that functions independently of these cellular components.
Ibeere 28 Ìròyìn
I
6 X + 6 H2 O → C6 H12 O6 + 6O2
III chlorophyll II IV
Use the diagram above to answer question that follows
The part labelled I is
Awọn alaye Idahun
The part labelled I in the given equation refers to sunlight.
Here is why:
The equation you've provided represents the chemical process of photosynthesis, which is how plants convert light energy into chemical energy stored in glucose (C6H12O6). This process occurs in the chloroplasts of plant cells.
Sunlight is essential in this process because it provides the energy needed for photosynthesis to occur. This process begins when chlorophyll (labelled as III) within the chloroplasts absorbs sunlight, enabling the transformation of carbon dioxide (CO2) and water (H2O) into glucose and oxygen (O2).
In summary, the part labelled I is sunlight because it is the energy source that drives the entire reaction of photosynthesis.
Ibeere 29 Ìròyìn
The endocrine gland that is called the master gland is the
Awọn alaye Idahun
The **pituitary gland** is known as the **"master gland"** of the endocrine system. Let us explore why this is important in a simple way.
The pituitary gland is a tiny, pea-sized organ located at the base of the brain, right behind the bridge of the nose. Despite its small size, it plays a crucial role in regulating vital body functions and general wellbeing.
Why is it called the master gland?
In summary, the pituitary gland is termed the "master gland" because it has the ability to control many other glands within the endocrine system, playing a pivotal role in maintaining the body's environment or homeostasis.
Ibeere 30 Ìròyìn
A medium texture soil with high organic matter is
Awọn alaye Idahun
A medium texture soil with high organic matter is best described as loamy soil. Here is why:
Loamy soil is a mix of three main soil types: sand, silt, and clay. This combination creates a soil that is rich in organic matter and nutrients, providing an excellent environment for plant growth.
Key Characteristics of Loamy Soil:
Understanding the benefits and characteristics of loamy soil can help in recognizing its importance in agriculture and gardening. Unlike clay or sandy soils, which might have issues with drainage or nutrient retention respectively, loamy soil offers a balance that is conducive for a wide variety of plants.
Ibeere 31 Ìròyìn
The cell organelle responsible for the synthesis of protein is the
Awọn alaye Idahun
The cell organelle responsible for the synthesis of protein is the ribosome.
To put it simply, ribosomes are like tiny factories within the cell. They read the genetic instructions carried by messenger RNA (mRNA) and use these instructions to assemble amino acids into proteins, which are essential molecules for various cell functions.
Here's how it works in a straightforward manner:
In summary, the ribosome is an essential organelle for protein synthesis, which is crucial for the cell's structure, function, and regulation of the body's tissues and organs.
Ibeere 32 Ìròyìn
One of the ways of controlling Schistosomiasis is by
Awọn alaye Idahun
One effective way of controlling Schistosomiasis is by destroying water snails and water weeds.
Schistosomiasis, also known as bilharzia, is a parasitic disease caused by trematode worms of the genus Schistosoma. The life cycle of these parasites heavily involves freshwater snails, which act as intermediate hosts. Here's how the life cycle works:
By destroying water snails and eliminating water weeds, which can provide habitat for these snails, you interrupt the lifecycle of the parasite. This can significantly reduce the risk of transmission to humans. It is crucial to control snail populations in freshwater bodies where human contact is common.
This method, along with other control measures such as providing access to safe water, improving sanitation, and educating communities about safe water practices, plays a crucial role in reducing schistosomiasis transmission. Importantly, to combat the disease effectively, a combination of approaches is usually necessary.
Ibeere 33 Ìròyìn
Which of the following processes takes place in the carbon cycle?
Awọn alaye Idahun
The carbon cycle is a natural process through which carbon is exchanged between different components of the Earth, including the atmosphere, oceans, soil, and living organisms. The process in the carbon cycle related to your question is combustion.
Combustion is the process of burning organic material such as fossil fuels (coal, oil, and natural gas) or biomass (like wood). When these materials are burned, they react with oxygen to produce energy, releasing carbon dioxide (CO2) and water vapor as by-products. This carbon dioxide is then released into the atmosphere, where it can be absorbed by plants through photosynthesis, thereby continuing the carbon cycle.
To clarify why the other processes are not part of the carbon cycle:
In summary, combustion is the process in the list above that plays a direct role in the carbon cycle by releasing carbon dioxide into the atmosphere.
Ibeere 34 Ìròyìn
The web-feet of frogs and toads is basically for
Awọn alaye Idahun
The **web-feet** of frogs and toads are primarily for **swimming**. Frogs and toads have webbed feet, which means their toes are connected by a thin membrane. This structure acts like a paddle, allowing them to push against water more effectively and move with greater ease and speed when they swim.
**Webbed feet** increase the surface area of their feet, providing more propulsion through the water, much like the way a duck's or other aquatic animal's webbed feet work. While they may also use their feet for other activities like **leaping** and **walking**, the primary adaptation and evolutionary advantage of having webbed feet is to enhance their ability to **swim** efficiently. Swimming is essential for frogs and toads because many of them live near water bodies and often have to escape predators, hunt for food, or move between land and water habitats.
Ibeere 35 Ìròyìn
The total number of ATP produced during glycolysis is
Awọn alaye Idahun
Glycolysis is the process through which one molecule of glucose is broken down into two molecules of pyruvate, and this process occurs in the cytoplasm of the cell. During glycolysis, two different phases are involved: the energy investment phase and the energy payoff phase. Let's break it down:
Energy Investment Phase: At the start of glycolysis, the cell uses 2 ATP molecules. This phase is necessary to modify the glucose molecule and prepare it for the subsequent reactions.
Energy Payoff Phase: As glycolysis continues, 4 ATP molecules are produced. These ATP molecules are formed when certain intermediates donate phosphate groups to ADP (adenosine diphosphate) to form ATP.
Hence, the net gain of ATP during the glycolytic process is calculated by subtracting the ATP used in the Energy Investment phase from those produced in the Energy Payoff phase.
The calculation is as follows:
ATP Produced = 4 molecules
ATP Used = 2 molecules
Net Gain = 4 - 2 = 2 molecules
Therefore, the total number of ATP produced during glycolysis, when considering the net gain, is 2 molecules of ATP.
Ibeere 36 Ìròyìn
Which of the following processes releases oxygen to the atmosphere?
Awọn alaye Idahun
In the context of releasing oxygen to the atmosphere, only one of the processes you've listed does this: photosynthesis. Let me explain it in a simple way.
Photosynthesis is a process carried out by plants, some bacteria, and algae. These organisms use sunlight, carbon dioxide, and water to create their food, which is a form of sugar. As a byproduct, they release oxygen into the atmosphere. During this process, chlorophyll, the green pigment in plant cells, captures light energy, and helps convert it into chemical energy.
None of the other processes release oxygen:
- Respiration is a process in which living organisms, including plants and animals, take in oxygen and use it to convert glucose into energy, producing carbon dioxide and water as byproducts.
- Combustion involves burning substances, typically in the presence of oxygen, usually resulting in the production of carbon dioxide, water, and energy (heat and light). It does not release oxygen; rather, it consumes oxygen.
- Decomposition is the breakdown of dead organic matter by microorganisms. During this process, organic matter is converted back into carbon dioxide, methane, and other compounds, but it does not release oxygen.
So, the process that releases oxygen into the atmosphere is photosynthesis.
Ibeere 37 Ìròyìn
Use the diagram to answer the question that follows
The flower of plants belongs to part labelled
Awọn alaye Idahun
The flower is the reproductive organ of a plant. It is a plant organ, which is defined as a group of tissues that work together to perform a specific function.
Ibeere 38 Ìròyìn
Use the diagram above to answer the question that follows
The diagram demonstrates
Awọn alaye Idahun
Thigmotropism is a directional growth movement which occurs as a mechanosensory response to a touch stimulus. Mechanosensory responses in plants are the ways that plants move or change shape in response to touch, wind, or other mechanical stimuli.
Phototropism is the ability of plants to grow towards or away from light, which is a vital adaptive process for plants.
Geotropism is the growth of the parts of plants in response to the force of gravity.
Hydrotropism is a plant's growth response in which the direction of growth is determined by a stimulus or gradient in water concentration. It is the growth or turning of plant roots towards or away from moisture.
Ibeere 39 Ìròyìn
One of the following is an example of discontinuous variation
Awọn alaye Idahun
Discontinuous variation refers to variations where the traits are distinct and categorical, meaning individuals can be grouped into distinct categories with no intermediate states. A good example of **discontinuous variation** from the options provided is **blood group**. This is because blood groups are distinct categories (e.g., A, B, AB, O) and individuals belong to one category without any intermediate states.
In contrast, other traits like **shape of the head**, **body complexion**, and **pointed nose** often show a range of variations that are continuous, meaning these traits can have many intermediate forms and cannot be easily categorized into discrete categories. Therefore, **blood group** is an **example of discontinuous variation** because it consists of clearly defined and non-overlapping categories.
Ibeere 40 Ìròyìn
Which of these pair of substances must be present for a seed to germinate in a laboratory set-up?
Awọn alaye Idahun
For a seed to germinate in a laboratory set-up, the key pair of substances required are heat and water.
Water is essential because it activates the enzymes that begin the germination process. When a seed absorbs water, it swells and breaks the seed coat. This process is known as imbibition, and it is the first step in germination. The absorbed water allows the enzymes to start breaking down stored food resources within the seed, providing the energy necessary for the growth of the embryonic plant.
Heat, on the other hand, is important because most seeds need to be within a certain temperature range to germinate effectively. Appropriate warmth can facilitate enzymatic activities and biochemical processes needed for growth. The required temperature varies between species, but generally, seeds need warmth to sprout successfully.
While microbes can contribute to soil fertility and the decomposition of organic material, they are not directly necessary for the germination process of seeds, nor is soil required in a controlled laboratory environment.
Similarly, while manure can provide nutrients in an outdoor setting, it is not a vital component in the controlled germination process in a lab. The focus in such controlled experiments is typically on the primary resources that directly aid in the seed's initial growth, namely water and suitable temperature from heat.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?