Nkojọpọ....
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
Tẹ ibi lati pa |
Ibeere 1 Ìròyìn
One of the following is an example of discontinuous variation
Awọn alaye Idahun
Discontinuous variation refers to variations where the traits are distinct and categorical, meaning individuals can be grouped into distinct categories with no intermediate states. A good example of **discontinuous variation** from the options provided is **blood group**. This is because blood groups are distinct categories (e.g., A, B, AB, O) and individuals belong to one category without any intermediate states.
In contrast, other traits like **shape of the head**, **body complexion**, and **pointed nose** often show a range of variations that are continuous, meaning these traits can have many intermediate forms and cannot be easily categorized into discrete categories. Therefore, **blood group** is an **example of discontinuous variation** because it consists of clearly defined and non-overlapping categories.
Ibeere 2 Ìròyìn
Infectious diseases are caused by
Awọn alaye Idahun
Infectious diseases are illnesses caused by certain harmful microorganisms that invade the body. These microorganisms can be grouped into several categories. Among these categories, two of the most notable are bacteria and protozoa. Both of these groups contain species that can lead to disease.
Bacteria are single-celled microorganisms. While many bacteria are harmless or even beneficial to humans, some can cause diseases such as strep throat, tuberculosis, and urinary tract infections. Bacteria are living organisms that reproduce by themselves, and they can sometimes produce toxins that harm the host.
Protozoa are a diverse group of single-celled organisms that live in a variety of moist or aquatic environments. Many protozoa are harmless, but some can cause serious diseases. For example, the protozoan parasite Plasmodium causes malaria, a serious disease transmitted by mosquitoes.
Protists is a broader term that includes protozoa as well as algae and fungi-like organisms, and while not all protists cause disease, the term could refer to certain disease-causing protozoans.
Amoebas are a type of protozoan characterized by their changing shape and movement. Although many amoebas are harmless, some types, such as Entamoeba histolytica, cause illnesses like amoebic dysentery, which is characterized by diarrhea and stomach pain.
In summary, infectious diseases can be caused by bacteria and a variety of protozoa, including specific types like amoebas. Understanding these different microorganisms helps in diagnosing and treating the diseases they cause.
Ibeere 3 Ìròyìn
An instrument used for measuring the intensity of light
Awọn alaye Idahun
The instrument used for measuring the **intensity of light** is a **photometer**.
Let me explain this in a simple way:
A **photometer** is a device that is specifically designed to measure the **strength or intensity** of light. It helps in determining how bright or dim a light source is. These devices are widely used in various fields such as photography, biology, and astronomy where measuring light intensity is crucial. Photometers can measure different wavelengths of light, including visible light, and sometimes UV or infrared light, depending on the type.
For comparison, let’s briefly learn about the other instruments mentioned:
As you can see, none of these instruments are designed to measure light intensity. Therefore, the correct instrument for measuring the **intensity of light** is the **photometer**.
Ibeere 4 Ìròyìn
Bilateral symmetry,cylindrical bodies and double openings are characteristic features of
Awọn alaye Idahun
The features you mentioned, namely bilateral symmetry, cylindrical bodies, and double openings, are characteristic of nematodes.
Let's break it down further:
In contrast:
Therefore, based on these descriptions, nematodes clearly align with the features of bilateral symmetry, cylindrical bodies, and double openings.
Ibeere 5 Ìròyìn
The process by which plants loss water to the atmosphere is
Awọn alaye Idahun
The process by which plants lose water to the atmosphere is referred to as transpiration. Let's break this down:
Transpiration is the process where water absorbed by plant roots is eventually released into the atmosphere as water vapor through the plant's leaves. This primarily occurs through small openings on the leaves known as stomata.
Here's how it happens:
Transpiration is crucial for plants because it not only helps them get rid of excess water but also plays a significant role in cooling the plant and enabling the upward movement of essential nutrients from the soil. It also contributes to the water cycle by adding moisture to the atmosphere.
In summary, transpiration is an essential process where plants lose water to the atmosphere, playing an important role in plant health and environmental equilibrium.
Ibeere 6 Ìròyìn
Reproduction in paramecium is by
Awọn alaye Idahun
Paramecium is a single-celled organism that belongs to the group of protists known as ciliates. The primary method of reproduction in paramecium is through binary fission. Let's break down what that means:
Binary Fission: This is a type of asexual reproduction, which means it does not involve the fusion of gametes (sperm and egg). Instead, it is a simple division process in which the organism creates a copy of itself. Here is how it works in paramecium:
This process of binary fission allows paramecia to reproduce quickly and efficiently, leading to exponential population growth under favorable conditions. Unlike other methods like budding, spore formation, or fragmentation, binary fission is a straightforward division of the cell into two identical parts.
Conclusion: Paramecium reproduces mainly by binary fission, a type of asexual reproduction that results in two genetically identical offspring from a single parent organism.
Ibeere 7 Ìròyìn
The causative agent of tuberculosis is
Awọn alaye Idahun
Tuberculosis, often abbreviated as TB, is a disease that primarily affects the lungs, although it can spread to other parts of the body. The **causative agent** of tuberculosis is a specific type of **bacteria** known as Mycobacterium tuberculosis.
To understand this better, let's break it down:
When someone with active tuberculosis coughs, sneezes, or even speaks, the bacteria can be spread through the air and inhaled by others, leading to new infections. This is why tuberculosis is described as a **contagious** disease.
Understanding that tuberculosis is caused by **bacteria** is crucial for its treatment and prevention. Antibiotics, which are medicines that specifically target bacterial infections, are used to treat and control the spread of tuberculosis.
In summary, it's important to recognize that tuberculosis is caused by a specific type of bacteria called Mycobacterium tuberculosis, which explains why antibiotics can be effective in its treatment.
Ibeere 8 Ìròyìn
Pentadactyl forelimb of vertebrate function due to differences in environment is
Awọn alaye Idahun
A pentadactyl forelimb in vertebrates, meaning a forelimb with five digits, serves a variety of functions depending on the animal's environment, showcasing how a single basic structure can be adapted through evolution to suit different needs, like swimming, flying, running, or grasping, all while maintaining the underlying five-digit pattern as a result of shared ancestry.
Physiological evidence is an evidence of evolution that deals with the functions of body parts among different species. For example, analogous structures are body parts of different species that have a similar function but can look different.
Moreover, physiological evidence focuses on the specific functional mechanisms and processes that underline the pentadactyl limb's operation while comparative anatomy addresses the evolutionary and anatomical origins of the pentadactyl plan. In other words, Anatomy is the study of the body's physical structure, while physiology is the study of how the body functions.
While both comparative anatomy and physiological evidence can support the concept of the pentadactyl forelimb in vertebrates, the key difference lies in the focus of study: comparative anatomy examines the structural similarities in bone arrangement across different species, whereas physiological evidence investigates how the limb functions and adapts to different behaviours in each species; essentially, comparative anatomy looks at the "blueprint" of the limb, while physiology examines how that structure is used in different contexts.
Embryological evidence of the pentadactyl forelimb of vertebrates includes the regulation of gene expression during limb development.
The fossil record of pentadactyl forelimbs shows that many vertebrates have a similar bone structure, even though their limbs look different on the outside.
Ibeere 9 Ìròyìn
Use the diagram above to answer the question that follows
The organ is responsible for
Awọn alaye Idahun
Since I do not have access to the diagram mentioned, I will explain all the functions listed and how they relate to specific organs. You can then match the explanation with the organ shown in the diagram.
Identify the organ in the diagram and match it with the corresponding function explained above.
Ibeere 10 Ìròyìn
The depressed side of paramecium which is lined with cilia leads to a tube-like structure called
Awọn alaye Idahun
The depressed side of a paramecium that is lined with cilia leads to a tube-like structure called the buccal cavity, also known as the gullet.
Ibeere 11 Ìròyìn
A community with a population of two million three hundred and ten thousand people living in an area of two thousand three hundred and ten square kilometres has a population density of
Awọn alaye Idahun
To calculate the population density of a region, you need to divide the **total population** by the **area** they are living in. This will give you the number of people per unit area, typically per square kilometer in this case.
Given:
The formula for population density is:
Population Density = Total Population / Area
By plugging in the given values:
Population Density = 2,310,000 / 2,310 = 1,000
This means there are **1,000 people per square kilometer** in this community. Therefore, the correct population density is **1,000**.
Ibeere 12 Ìròyìn
The chemical and physical composition of soil is an example of
Awọn alaye Idahun
The chemical and physical composition of soil is an example of an Edaphic factor.
Let's break this down:
Edaphic factors are the characteristics of the soil that influence the organisms living in it. These include the soil's chemical properties, such as its pH, nutrient content, and mineral composition, as well as its physical properties, like texture, structure, and moisture levels. They directly affect plant growth, as plants rely on soil for nutrients and support.
In contrast, the other factors mentioned are not directly related to soil composition:
Thus, when we talk about the chemical and physical composition of soil, we are specifically referring to its edaphic factors.
Ibeere 13 Ìròyìn
Use the diagram above to answer the question that follows
What is the genotypic ratio of the offspring produced in F1 generation?
Awọn alaye Idahun
When dealing with genetics, the genotypic ratio of offspring, particularly in the F1 generation, typically refers to the relative number of different genotypic combinations resulting from a genetic cross. To determine this ratio, it helps to construct a Punnett square, which is a grid that considers all possible combinations of parental genes.
In this specific scenario, although the diagram is not provided here, the genotypic ratio will depend on the types of alleles involved in the F1 generation. Most commonly in simple monohybrid crosses, if you're crossing two heterozygous organisms (e.g., Aa x Aa), the expected genotypic ratio is:
Therefore, the genotypic ratio of the offspring produced in the F1 generation is 1:2:1.
The reasoning is straightforward: Each parent can contribute either one of two alleles. When combined in the F1 generation, they complete a set that falls into the three categories mentioned. Thus, when considering the options provided, the correct genotypic ratio for such a monohybrid cross is indeed 1:2:1.
Ibeere 14 Ìròyìn
Awọn alaye Idahun
Inbreeding is highly discouraged in humans primarily because it can greatly increase the risk of hereditary diseases. When close relatives, who may share similar genetic traits, have children together, there is a higher probability that both parents carry the same recessive genes. These recessive genes could cause genetic disorders if inherited in pairs. In an outbred population, these recessive genes are less likely to pair up, thereby reducing the risk of such disorders.
Hereditary diseases include conditions like cystic fibrosis, sickle cell anemia, and Tay-Sachs disease. These diseases can cause severe health problems and affect the quality of life of those born with them. The higher genetic similarity between parents who are closely related increases the chances of these diseases manifesting in their offspring.
In addition, inbreeding can also lead to the phenomenon known as "inbreeding depression," which can cause a reduction in fertility, survivability, and growth rates due to the accumulation of deleterious alleles. This can contribute to an increased death rate of newborns or result in other developmental concerns.
In summary, inbreeding increases the likelihood of harmful genetic conditions being expressed and can significantly impact the health and survival of the offspring, which is why it is strongly discouraged in human societies.
Ibeere 15 Ìròyìn
Use the diagram above to answer the question that follows
The experiment is set up to determine the presence of
Awọn alaye Idahun
Chlorophyll: Experiments related to chlorophyll typically involve leaves and light exposure to understand photosynthesis. You might see diagrams showing a leaf that is partially covered with foil to demonstrate which parts of the leaf perform photosynthesis.
Starch: To test for the presence of starch, particularly in plants, an experiment usually involves boiling a leaf in water, then in alcohol, and finally treating it with iodine solution. The presence of starch is confirmed by a blue-black color change.
Oxygen: Experiments designed to detect oxygen often involve aquatic plants like Elodea. When the plant is exposed to light, bubbles or gases released would indicate photosynthetic activity, releasing oxygen.
Pigment: Pigment experiments often relate to chromatography, where pigments are separated on a medium like paper. These are used to study various pigments present within plant tissues.
Ibeere 16 Ìròyìn
Awọn alaye Idahun
In a genetic cross, when we have a heterozygous red flower plant (Rr) and a white flowered plant (rr), we can use a Punnett square to determine the probability of each possible genotype of the offspring.
The parent genotypes are:
We can set up a Punnett square with the following alleles:
r | r | |
---|---|---|
R | Rr | Rr |
r | rr | rr |
From the table, we can see the following possible outcomes for the offspring:
Therefore, the probability that the offspring will be Rr is 2 out of 4 (or 1/2).
Ibeere 17 Ìròyìn
The part of the inner ear that is responsible for hearing is
Awọn alaye Idahun
The part of the inner ear that is responsible for hearing is the cochlea.
The cochlea is a spiral-shaped, fluid-filled structure that looks a little like a snail shell. Its primary function is to convert sound waves from the air into electrical signals that can be interpreted by the brain as sound. Here's how it works:
Thus, the cochlea plays an essential role in the process of hearing by transforming sound vibrations into nerve impulses that the brain can understand.
Ibeere 18 Ìròyìn
Which of the following statements explains the theory of natural selection?
Awọn alaye Idahun
The theory of natural selection, proposed by Charles Darwin, explains how species evolve over time through the survival and reproduction of individuals that are better adapted to their environment. Let's break down the concepts related to the statements you've provided:
1. There is no struggle for existence: This statement is incorrect in the context of natural selection. The theory is based on the concept of a "struggle for existence," which means that due to limited resources, such as food, water, and shelter, individuals within a species must compete to survive. Because only the organisms that are better adapted to their environment can survive and reproduce, this statement does not correctly explain the theory.
2. New species get better adaptation: While partially related, this statement isn’t a direct explanation of natural selection. Natural selection leads to the evolution of better-adapted individuals within a species, rather than creating entirely new species immediately. Over long periods, accumulated adaptations may lead to the emergence of new species, a process known as speciation.
3. The weaker offspring are eliminated: This statement is a key aspect of natural selection. The process favors individuals with traits that improve their chances of survival and reproduction in a given environment. Over time, weaker individuals or those with less advantageous traits are unlikely to survive and reproduce, leading to a gradual increase in the prevalence of advantageous traits within the population.
4. Unused structures disappear later: This refers more to the concept of "use and disuse," which is associated with Lamarckism, rather than Darwin's theory of natural selection. In natural selection, it's not the unused parts that disappear; rather, changes in the environment can lead to certain traits becoming more or less advantageous, affecting their prevalence in future generations.
In summary, the statement that "the weaker offspring are eliminated" best encapsulates a core component of the theory of natural selection, which is the differential survival and reproduction of individuals based on their inherited traits.
Ibeere 19 Ìròyìn
Mouth part adapted for piercing and sucking is found in
Awọn alaye Idahun
The mouth parts adapted for piercing and sucking are found in the mosquito. Mosquitoes have specialized mouthparts known as a proboscis, which is designed to pierce the skin of their hosts and suck blood. This proboscis consists of a long, slender, and flexible tube that can penetrate the skin. Inside the proboscis are several delicate structures that help to hold the host's skin and locate blood vessels, allowing the mosquito to efficiently feed on blood.
In contrast, insects like the housefly have sponge-like mouthparts for lapping up liquids, the grasshopper has chewing mouthparts adapted for eating plants, and the cockroach also has chewing mouthparts suitable for a wide range of foods.
Ibeere 20 Ìròyìn
Blood group AB is considered as universal recipient because they can receive blood from groups
Awọn alaye Idahun
Blood group AB is considered a universal recipient because individuals with this blood type can receive blood from all other blood groups, including A, B, AB, and O. This is possible due to the presence of both A and B antigens on the surface of their red blood cells and the absence of anti-A and anti-B antibodies in their plasma.
Here’s a simple breakdown:
This makes AB blood group the universal recipient as they can accept A, B, AB, and O blood, without experiencing adverse reactions caused by antibody-antigen incompatibility.
Ibeere 21 Ìròyìn
The feeding relationship between ruminants and the bacteria in their digestive tract is
Awọn alaye Idahun
The feeding relationship between ruminants and the bacteria in their digestive tract is symbiotic. In this type of relationship, both the ruminants and the bacteria benefit from each other.
Here's how it works:
This mutual benefit showcases a symbiotic relationship, where both organisms support each other's survival and wellbeing.
Ibeere 22 Ìròyìn
The bacteria in the large intestine of man synthesizes
Awọn alaye Idahun
The large intestine of humans is home to a diverse community of beneficial bacteria. These bacteria primarily synthesize vitamins, particularly vitamin K and some of the B vitamins, such as B12. They do not typically produce minerals or glucose.
Here's a simple breakdown:
Thus, the correct and simplest answer is that the bacteria in the large intestine primarily synthesize vitamins.
Ibeere 23 Ìròyìn
Comparative anatomy to study evidence for evolution depends on
Awọn alaye Idahun
**Comparative anatomy** involves studying the similarities and differences in the anatomy of different species. One of its main purposes in understanding **evolution** is to trace how organisms are related through common ancestry. When we look at the limbs of different animals, some specific features provide essential evidence for evolution.
A key feature often examined is the structure of the limbs of vertebrates, which have evolved to adapt to different environments and modes of living, but share a basic underlying structure. This shared structure is often referred to as the **pentadactyl limb** pattern. The term "pentadactyl" means **five-fingered** or having five digits.
In many vertebrates like humans, whales, bats, and so forth, this **five-fingered** limb structure can be observed, although it has evolved to perform different functions in each species. For example, a human hand, a bat's wing, and a whale's flipper all have the same basic arrangement of bones. This points to the fact that these species share a **common ancestor** and have evolved differently as they adapted to their environments.
Thus, comparative anatomy's focus on the **five-fingered** pattern in limbs is crucial as it provides **evidence** of evolutionary relationships among diverse species, illustrating how they have evolved from a shared ancestry.
Ibeere 24 Ìròyìn
The common examples of trees found in the desert are
Awọn alaye Idahun
Deserts are characterized by their arid conditions, meaning they receive very little rainfall throughout the year. To survive in such environments, plants need special adaptations. Among the plant varieties, the trees commonly found in deserts include **cacti** and the **baobab tree**. Here's a brief explanation of why these trees are well-suited to desert environments:
Plants like **raffia palm**, **coconut**, **white and red mangrove**, and **shea-butter** trees are not typically found in desert environments because they require more moisture and different soil conditions compared to the harsh, dry lands of the desert.
Ibeere 25 Ìròyìn
Awọn alaye Idahun
The central nervous system (CNS) is a crucial part of the overall nervous system in the body, responsible for processing information and controlling most functions of the body and mind. It comprises the brain and the spinal cord.
1. Brain: The brain is the control center of the CNS. It is responsible for interpreting sensory information, coordinating movement, and managing functions such as thoughts, emotions, and memories. The brain oversees all voluntary and involuntary actions.
2. Spinal Cord: The spinal cord acts like a communication highway, transmitting signals between the brain and the rest of the body. It is essential for reflex actions and relays messages to and from the brain.
Together, the brain and spinal cord make up the central nervous system. Without this system, the body would not be able to respond appropriately to stimuli or maintain homeostasis. Thus, the correct components of the central nervous system are the brain and spinal cord.
Ibeere 26 Ìròyìn
The oxygen transported to all parts of the body during blood circulation is used for the
Awọn alaye Idahun
The oxygen that is transported to all parts of the body during blood circulation is primarily used for the release of energy from food. This process is also known as cellular respiration.
Here's how it works:
Thus, the presence of oxygen is vital for cells to convert the energy stored in food into a form that can be used for all activities, from metabolic processes to muscle contraction. In summary, the primary purpose of oxygen transportation during blood circulation is for the release of energy from food, which is essential for maintaining life and performing all physiological functions.
Ibeere 27 Ìròyìn
A trait that is always expressed during crossing of hereditary characteristics is
Awọn alaye Idahun
When discussing the crossing of hereditary characteristics, a trait that is always expressed is known as a dominant trait. In genetics, traits are determined by genes, and each trait has two alleles, one from each parent. Alleles can either be dominant or recessive.
Dominant traits are those that are expressed in the organism's phenotype when at least one allele for the trait is dominant. This means that even if the organism has one dominant and one recessive allele for a trait, the dominant trait will take precedence and be observed in the individual.
Conversely, a recessive trait is only manifested in the phenotype if both alleles for that trait are recessive. Therefore, when a dominant allele is present, it will mask the expression of a recessive allele, resulting in the dominance of the trait in question.
For example, if a plant has one allele for tall height (dominant) and one for short height (recessive), the plant will appear tall because the tall allele is dominant.
Ibeere 28 Ìròyìn
Loamy soil is characterized by
Awọn alaye Idahun
Loamy soil is characterized by a distinct combination of features that make it particularly favorable for plant growth. It contains a balanced mixture of three types of soil particles: sand, silt, and clay. This combination gives loamy soil its unique properties.
High Humus: Loamy soil is known for having a high content of organic matter, often referred to as humus. Humus is important because it improves soil fertility, provides vital nutrients for plants, and helps retain moisture.
Moderate Porosity: Loamy soil has a structure that provides moderate porosity. This means it can hold water effectively while also allowing excess water to drain away, ensuring that plants have both the water and air they need. It balances water retention and aeration very well.
Because of these characteristics, loamy soil is considered one of the best soils for agriculture and gardening. Therefore, the description that best characterizes loamy soil is high humus and moderate porosity.
Ibeere 29 Ìròyìn
The endocrine gland that is called the master gland is the
Awọn alaye Idahun
The **pituitary gland** is known as the **"master gland"** of the endocrine system. Let us explore why this is important in a simple way.
The pituitary gland is a tiny, pea-sized organ located at the base of the brain, right behind the bridge of the nose. Despite its small size, it plays a crucial role in regulating vital body functions and general wellbeing.
Why is it called the master gland?
In summary, the pituitary gland is termed the "master gland" because it has the ability to control many other glands within the endocrine system, playing a pivotal role in maintaining the body's environment or homeostasis.
Ibeere 30 Ìròyìn
The food nutrient with the highest energy value is
Awọn alaye Idahun
The food nutrient with the highest energy value is lipids, which include fats and oils.
The reason lipids have the highest energy value is due to their chemical structure. They contain long chains of carbon and hydrogen atoms, which can store a significant amount of energy. When these bonds are broken down in the body, they release energy.
In terms of energy measurement, lipids provide about 9 calories per gram, whereas proteins and carbohydrates each provide about 4 calories per gram. Minerals do not provide energy but are essential for other bodily functions.
Therefore, lipids are more energy-dense and offer more energy per gram compared to other nutrients. This is why they are considered the food nutrient with the highest energy value.
Ibeere 31 Ìròyìn
The schlerenchyma tissues consist of
Awọn alaye Idahun
Schlerenchyma tissues are a type of plant tissue known for providing structural support. These tissues are composed of cells that are typically dead at maturity. The cell walls of schlerenchyma tissues are thickened with lignin, which makes them rigid and strong. These characteristics help in supporting the plant body and protecting the plant against external mechanical forces.
To clarify, let's consider the types of cells mentioned:
In summary, schlerenchyma tissues consist mainly of dead cells. Their primary role is structural support, making them distinct from tissues composed of living cells, tracheid cells, or meristematic cells.
Ibeere 32 Ìròyìn
Which of the following plant is found in the ground layer of a tropical rainforest in Nigeria?
Awọn alaye Idahun
In a tropical rainforest, the forest layers are characterized by distinct types of vegetation. The **ground layer** hosts plants and organisms that typically thrive in low-light conditions due to the dense canopy above. Such layers often consist of mosses, ferns, and small plants that can grow with limited sunlight.
When considering the plants listed:
Thus, the answer is **liverwort**, as it appropriately matches the ecological niche of the **ground layer** in a tropical rainforest.
Ibeere 33 Ìròyìn
?
Use the diagram above to answer the question that follows
The diagram above is
Awọn alaye Idahun
The circulatory system is a network of blood vessels, the heart, and blood that moves throughout the body. The circulatory system's main function is to transport nutrients, oxygen, and hormones to the body's cells, and remove waste products.
The reproductive system is a collection of organs in both males and females that work together to produce offspring, primarily consisting of the gonads (ovaries in females, testes in males) which create sex cells (eggs and sperm), and accessory organs that transport and nurture these cells to facilitate fertilization and potential pregnancy.
The nervous system is a complex network of nerves and nerve cells (neurons) that control bodily functions by sending signals between the brain and the rest of the body, allowing us to move, think, feel, and regulate internal processes; it consists of two main parts: the central nervous system (brain and spinal cord) and the peripheral nervous system
The urinary system helps the body maintain balance by removing waste products like urea, extra salt, and extra water. Urea is a waste product created when the body breaks down protein from foods like meat, poultry, and some vegetables. Its function is to remove waste from the body through urine bladder, urethra, kidneys and ureters.
Parts of the urinary system
Ibeere 34 Ìròyìn
Similar structures that are modified to work in different ways in different organisms are referred to as
Awọn alaye Idahun
Structures that are similar in form and origin but have been **modified** over time to function differently in various organisms are known as **homologous structures**. These structures indicate a common evolutionary ancestor. For example, the forelimbs of humans, bats, whales, and cats have the same basic bone structure but have adapted differently for tasks such as grabbing, flying, swimming, and walking. Each of these organisms developed modifications in their limb structure to suit their environment and lifestyle, which showcases the concept of homologous structures. Unlike **analogous structures** that have similar functions in different organisms but different evolutionary origins, homologous structures emphasize a common ancestry with different functional outcomes.
Ibeere 35 Ìròyìn
Which of the following is a viral disease?
Awọn alaye Idahun
Out of the diseases listed, Measles is a viral disease. Let me explain this simply:
In summary, Measles is the only viral disease among the options provided, as it is specifically caused by a virus, unlike the others, which are caused by bacteria.
Ibeere 36 Ìròyìn
A common component of blood and lymph is
Awọn alaye Idahun
Blood and lymph are both crucial components of the circulatory and immune systems in the body. One of the key components that is common to both blood and lymph is the white blood cell. Here's how:
White blood cells, also known as leukocytes, play a significant role in defending the body against infections, diseases, and foreign invaders. They are an essential part of the immune system.
In blood, white blood cells circulate through the cardiovascular system and help in identifying and attacking pathogens like bacteria, viruses, and other harmful microorganisms.
In lymph, white blood cells are found in the lymphatic fluid and lymph nodes, where they help filter and trap pathogens, preventing them from spreading further into the body.
Therefore, white blood cells are the common component of both blood and lymph, playing a crucial role in the body's defense mechanisms.
Ibeere 37 Ìròyìn
Which of the following factors can lead to overcrowding?
Awọn alaye Idahun
To understand overcrowding, we need to consider factors that increase or decrease a population within a certain area.
High natality refers to a high birth rate. When more individuals are born in an area than those leaving it, the population will naturally increase, potentially leading to overcrowding as the area becomes inhabited by more individuals than it can comfortably support. This is because more births without corresponding departures or deaths means more people vying for the same resources.
Emigration is the process of individuals moving out of a given area to live elsewhere. This movement decreases the population of an area, which would typically help prevent overcrowding rather than cause it. Hence, emigration does not lead to overcrowding.
Competition involves individuals or species competing for limited resources such as food, water, or territory. While it does not directly cause overcrowding, high population density due to overcrowding can intensify competition since more individuals fight for the same scarce resources. Thus, competition is more of a consequence rather than a direct cause of overcrowding.
High mortality means a high death rate. This reduces the number of individuals in a population, which works against overcrowding. With more individuals dying, the population decreases or stabilizes, alleviating pressures that lead to overcrowding.
In summary, among the listed factors, high natality is the most significant contributor to overcrowding as it directly increases population size when not matched by increased emigration or mortality.
Ibeere 38 Ìròyìn
The organisms that adopt swarming as an adaptation to overcome overcrowding are
Awọn alaye Idahun
Among the organisms listed, termites are well-known for adopting swarming as an adaptation to overcome overcrowding.
Here's why:
Swarming in termites is a crucial natural strategy that allows them to efficiently manage their population and ensure the survival and expansion of their colonies.
Ibeere 39 Ìròyìn
Which of the following characteristics is possessed by both living and non-living things?
Awọn alaye Idahun
In considering the given options, the characteristic that is possessed by both living and non-living things is that they both have weight.
Here is the simple explanation:
Therefore, the characteristic of having weight is shared by both living and non-living things.
Ibeere 40 Ìròyìn
Use the diagram above to answer the questions that follow
The part labelled I is
Awọn alaye Idahun
The part labelled I in the diagram is the oviduct.
To understand why it is the oviduct, let's first understand what an oviduct is. The oviduct, also known as the fallopian tube, is a tube-like structure that connects the ovary to the uterus in female mammals. Its main function is to transport eggs from the ovaries towards the uterus. Fertilization of the egg by sperm typically occurs within the oviduct.
Now, let's look at the structure of the other options:
Placenta: The placenta is an organ that develops in the uterus during pregnancy. It provides oxygen and nutrients to the growing baby and removes waste products from the baby's blood.
Amnion: The amnion is a thin membrane that forms a protective sac filled with amniotic fluid around the developing embryo or fetus.
Uterus: The uterus is a muscular organ where a fertilized egg implants and grows into a fetus during pregnancy.
Based on the description and location given by the diagram, part I is most consistent with the oviduct, as it is likely representing the tube-like structure leading from the ovary to the uterus.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?