Nkojọpọ....
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
Tẹ ibi lati pa |
Ibeere 1 Ìròyìn
Which of these is a medium of transportation in plants?
Awọn alaye Idahun
In plants, the **medium of transportation** is primarily the **cell sap**. Cell sap is the liquid found inside the large central vacuole of plant cells, and it plays a key role in transporting nutrients, minerals, and waste products. The vacuole itself is an important component in maintaining cell turgor pressure, which helps keep the plant upright. The movement of cell sap helps distribute essential substances throughout the plant.
On the other hand, the other options do not serve as media for transportation in plants:
Therefore, for transportation within plants, the **cell sap** is the correct answer.
Ibeere 2 Ìròyìn
A medium texture soil with high organic matter is
Awọn alaye Idahun
A medium texture soil with high organic matter is best described as loamy soil. Here is why:
Loamy soil is a mix of three main soil types: sand, silt, and clay. This combination creates a soil that is rich in organic matter and nutrients, providing an excellent environment for plant growth.
Key Characteristics of Loamy Soil:
Understanding the benefits and characteristics of loamy soil can help in recognizing its importance in agriculture and gardening. Unlike clay or sandy soils, which might have issues with drainage or nutrient retention respectively, loamy soil offers a balance that is conducive for a wide variety of plants.
Ibeere 3 Ìròyìn
The endocrine gland that is called the master gland is the
Awọn alaye Idahun
The **pituitary gland** is known as the **"master gland"** of the endocrine system. Let us explore why this is important in a simple way.
The pituitary gland is a tiny, pea-sized organ located at the base of the brain, right behind the bridge of the nose. Despite its small size, it plays a crucial role in regulating vital body functions and general wellbeing.
Why is it called the master gland?
In summary, the pituitary gland is termed the "master gland" because it has the ability to control many other glands within the endocrine system, playing a pivotal role in maintaining the body's environment or homeostasis.
Ibeere 4 Ìròyìn
The pigment carrying oxygen in the blood is
Awọn alaye Idahun
The pigment responsible for carrying oxygen in the blood is haemoglobin. Haemoglobin is a complex protein found in red blood cells. Its primary function is to transport oxygen from the lungs to the rest of the body and return carbon dioxide from the body to the lungs for exhalation. Each haemoglobin molecule can bind to four oxygen molecules, allowing it to carry and efficiently distribute a large amount of oxygen throughout the body.
Here's a simple explanation of how it works:
It is essential to note that while oxyhaemoglobin is simply haemoglobin that has combined with oxygen, the fundamental oxygen-carrying pigment itself is still haemoglobin.
Ibeere 5 Ìròyìn
Use the diagram above to answer the question that follows.
Examples of non-vascular plants are labelled
Awọn alaye Idahun
Marchantia is a member of the Marchantiaceae, the Marchantia family. This family is one of many thalloid liverwort families or bryophyta. A thalloid liverwort is strap-like and often forms large colonies on the surface on which it grows. A liverwort is non-vascular green plant.
Spirogyra is a green algae that is a member of the Thallophyta division. It is also known as water silk, mermaid's tresses, and blanket weed.
Dryopteris, also known as wood ferns, male ferns, or buckler ferns, is a genus of ferns in the Dryopteridaceae family, of pteridophyta.
Cycads are part of the order Cycadales and the division Cycadophyta, which are both groups of gymnosperms.
Maize belongs to the group angiosperms. Angiosperms are plants that have a well-developed vascular system
Only bryophytes(Marchantia) - I and Thallophytes (Spirogyra) - II are non- vascular, others have vascular systems. Therefore option A is the correct answer.
Ibeere 6 Ìròyìn
A succession that occurs in an area where there are no pre-existing community is called
Awọn alaye Idahun
A succession that occurs in an area where there is no pre-existing community is called Primary Succession.
To understand this, imagine a barren landscape where life has never existed before, such as a newly formed volcanic island or a region uncovered by a retreating glacier. In such places, there are no soils or organisms present initially. Here’s how it happens:
In summary, primary succession describes the process of life gradually establishing itself from scratch in an environment that starts with no life or soil, forming an ecosystem over time.
Ibeere 7 Ìròyìn
If the F1 generation allows for self-pollination, what will be the genotypic ratio of the offspring?
Awọn alaye Idahun
To determine the genotypic ratio of the offspring when the F1 generation allows for self-pollination, first understand the process of Mendelian genetics. In a typical monohybrid cross, let's assume two homozygous parents, one dominant (AA) and one recessive (aa). When these two are crossed, the F1 generation will all have the genotype Aa, which is heterozygous.
If we allow the F1 generation (Aa) to self-pollinate, crossing Aa with Aa, the potential genotypes of the offspring can be determined using a Punnett square:
A | a | |
A | AA | Aa |
a | Aa | aa |
From this Punnett square, you can see the possible combinations:
Thus, the genotypic ratio of the offspring is 1 : 2 : 1, which represents one homozygous dominant (AA), two heterozygous (Aa), and one homozygous recessive (aa).
Ibeere 8 Ìròyìn
?
Use the diagram above to answer the question that follows
The diagram above is
Awọn alaye Idahun
The circulatory system is a network of blood vessels, the heart, and blood that moves throughout the body. The circulatory system's main function is to transport nutrients, oxygen, and hormones to the body's cells, and remove waste products.
The reproductive system is a collection of organs in both males and females that work together to produce offspring, primarily consisting of the gonads (ovaries in females, testes in males) which create sex cells (eggs and sperm), and accessory organs that transport and nurture these cells to facilitate fertilization and potential pregnancy.
The nervous system is a complex network of nerves and nerve cells (neurons) that control bodily functions by sending signals between the brain and the rest of the body, allowing us to move, think, feel, and regulate internal processes; it consists of two main parts: the central nervous system (brain and spinal cord) and the peripheral nervous system
The urinary system helps the body maintain balance by removing waste products like urea, extra salt, and extra water. Urea is a waste product created when the body breaks down protein from foods like meat, poultry, and some vegetables. Its function is to remove waste from the body through urine bladder, urethra, kidneys and ureters.
Parts of the urinary system
Ibeere 9 Ìròyìn
The formation of cilia and flagella in living cells is carried out with the help of
Awọn alaye Idahun
The formation of cilia and flagella in living cells is primarily carried out with the help of centrioles.
In eukaryotic cells, cilia and flagella are long, hair-like structures that extend from the surface of the cell and are responsible for movement. They are made up of microtubules, which are protein structures. The base of a cilium or a flagellum is anchored to a cell by a structure called the basal body.
The basal body is very similar in structure to a centriole. Centrioles are cylinder-shaped organelles found in animal cells and are composed of microtubule triplets. When a cell is ready to produce cilia or flagella, the centrioles migrate to the surface of the cell and become basal bodies by aiding in the assembly and organization of these microtubules.
Therefore, the role of centrioles is crucial because they act as the organizing centers for the microtubule structures that comprise cilia and flagella. Without centrioles, a cell would not be able to form these important structures.
Ibeere 10 Ìròyìn
Awọn alaye Idahun
The first organisms on Earth are widely believed to have evolved from aquatic habitats. This conclusion is based on several scientific observations and theories.
1. **Early Earth Conditions:** When Earth was still a young planet, conditions were harsh, with a very hot climate and volcanic activity. During this time, the planet's surface was largely covered by oceans which provided a stable environment where simple life forms could potentially thrive. The presence of water is essential because it acts as a medium for chemical reactions and life-supporting processes.
2. **Chemistry of Life:** Water is a solvent that facilitates the necessary chemical reactions required for life. In aquatic environments, organic molecules could dissolve in water, leading to complex chemical reactions, leading to the formation of proteins, lipids, and nucleic acids, which are building blocks of life.
3. **Abiogenesis and the "Primordial Soup" Theory:** One theory of how life began is called the "primordial soup" theory, which suggests that life originated through chemical reactions in the ocean. This soup-like mixture of organic compounds provided the ideal conditions for the first living organisms to form.
4. **Evidence from Fossils:** The oldest known fossils are those of simple microorganisms such as bacteria. These fossils have been found in ancient sedimentary rocks, which were formed in water.
In summary, while there are different types of habitats available on Earth now, the initial conditions billions of years ago favored the formation of life in an aquatic environment. Therefore, it is widely accepted that the earliest life forms evolved in the aquatic habitat.
Ibeere 11 Ìròyìn
Awọn alaye Idahun
Inbreeding is highly discouraged in humans primarily because it can greatly increase the risk of hereditary diseases. When close relatives, who may share similar genetic traits, have children together, there is a higher probability that both parents carry the same recessive genes. These recessive genes could cause genetic disorders if inherited in pairs. In an outbred population, these recessive genes are less likely to pair up, thereby reducing the risk of such disorders.
Hereditary diseases include conditions like cystic fibrosis, sickle cell anemia, and Tay-Sachs disease. These diseases can cause severe health problems and affect the quality of life of those born with them. The higher genetic similarity between parents who are closely related increases the chances of these diseases manifesting in their offspring.
In addition, inbreeding can also lead to the phenomenon known as "inbreeding depression," which can cause a reduction in fertility, survivability, and growth rates due to the accumulation of deleterious alleles. This can contribute to an increased death rate of newborns or result in other developmental concerns.
In summary, inbreeding increases the likelihood of harmful genetic conditions being expressed and can significantly impact the health and survival of the offspring, which is why it is strongly discouraged in human societies.
Ibeere 12 Ìròyìn
Which of the following characteristics is possessed by both living and non-living things?
Awọn alaye Idahun
In considering the given options, the characteristic that is possessed by both living and non-living things is that they both have weight.
Here is the simple explanation:
Therefore, the characteristic of having weight is shared by both living and non-living things.
Ibeere 13 Ìròyìn
DNA carries the genetic information and are generally found in the
Awọn alaye Idahun
DNA, which stands for Deoxyribonucleic Acid, is the molecule that contains the genetic instructions for the development, functioning, growth, and reproduction of all known living organisms and many viruses. It is often referred to as the blueprint of life because it holds the instructions needed to build and maintain an organism.
DNA is primarily found in the chromosomes within the cell nucleus. Chromosomes are long, thread-like structures made of protein and a single molecule of DNA. Every human cell, for example, typically contains 23 pairs of chromosomes, amounting to a total of 46. These chromosomes are distributed evenly when cells divide, ensuring that each new cell contains a complete set of genetic information.
Other components like ribosomes, blood, and enzymes do not contain DNA in the way chromosomes do. Ribosomes are cellular structures responsible for protein synthesis, blood is a body fluid important for transporting nutrients and oxygen, and enzymes are proteins that catalyze biochemical reactions. While they all perform essential roles within the organism, they do not serve as carriers of genetic information.
Ibeere 14 Ìròyìn
Mouth part adapted for piercing and sucking is found in
Awọn alaye Idahun
The mouth parts adapted for piercing and sucking are found in the mosquito. Mosquitoes have specialized mouthparts known as a proboscis, which is designed to pierce the skin of their hosts and suck blood. This proboscis consists of a long, slender, and flexible tube that can penetrate the skin. Inside the proboscis are several delicate structures that help to hold the host's skin and locate blood vessels, allowing the mosquito to efficiently feed on blood.
In contrast, insects like the housefly have sponge-like mouthparts for lapping up liquids, the grasshopper has chewing mouthparts adapted for eating plants, and the cockroach also has chewing mouthparts suitable for a wide range of foods.
Ibeere 15 Ìròyìn
Use the diagram above to answer the question that follows
The organism belongs to kingdom
Awọn alaye Idahun
The diagram is that of the virus. Viruses are obligate parasites, meaning they can't produce their own energy or proteins. They enter the host cell and use the cell's machinery to make their own nucleic acids and proteins. Viruses also use the host cell's lipids and sugar chains to create their membranes and glycoproteins. This parasitic replication can severely damage the host cell, which can lead to disease or cell death. They usually enter your body through your mucous membranes. These include your eyes, nose, mouth, penis, vagina and anus.
Viruses are a unique type of organism that are not plants, animals, or bacteria. They are often classified in their own kingdom. However, for the sake of the question, since most of their attributes and metabolic activities are more of the bacteria, we'll go with option A - Monera
Ibeere 16 Ìròyìn
The main excretory product of earthworm is
Awọn alaye Idahun
The main excretory product of an earthworm is urea, with some ammonia gas also being released.
Earthworm is an annelid whose major excretory products are: Urea ~ 50% , Ammonia ~ 20-40% , Creatinine and other nitrogenous compounds ~ 5%
Uric acid is the main excretory product of birds, reptiles, and some insects.
Ibeere 17 Ìròyìn
The transmission of diseases through contamination of food is an economic importance of
Awọn alaye Idahun
The transmission of diseases through contamination of food is an economic importance primarily related to cockroaches.
Cockroaches are considered pests that thrive in unsanitary environments. They are known to carry various pathogens, such as bacteria, viruses, and parasites, on their bodies and in their droppings. When they come into contact with food, they can contaminate it, leading to foodborne diseases.
This contamination can have several economic impacts:
Therefore, managing and preventing cockroach infestations is crucial to safeguarding public health and protecting economic interests associated with food safety.
Ibeere 18 Ìròyìn
The rhizoid of liverwort is
Awọn alaye Idahun
The rhizoid of liverwort is unicellular and unbranched.
Here's a simple explanation: Liverworts are a type of non-vascular plant that have structures called rhizoids. These rhizoids look like tiny hairs and they help the plant attach to surfaces like rocks or soil. Even though they help with attachment, they do not have the complexity of true roots.
In liverworts, these rhizoids are formed as single cells, which means they are unicellular. Think of them as being like a single long cell that looks like a hair. This single-celled structure is unbranched, meaning it doesn't split or divide into more parts or sections.
In summary, liverwort rhizoids are unicellular and unbranched, helping them secure the plant to various surfaces without forming complex root structures.
Ibeere 19 Ìròyìn
The number of vertebrae in the human vertebral column is
Awọn alaye Idahun
The human vertebral column, also known as the spine or backbone, consists of a series of bones called vertebrae. These vertebrae are stacked on top of each other and are categorized into different regions. There are a total of 33 vertebrae in the human vertebral column.
Here's a simple breakdown:
Therefore, when you add up these vertebrae (7 cervical + 12 thoracic + 5 lumbar + 5 sacral + 4 coccygeal), you get a total of 33 vertebrae in the human vertebral column. It's important to note that while the sacral and coccygeal vertebrae are often fused together, they are still counted separately when totaling the number of vertebrae.
Ibeere 20 Ìròyìn
Comparative anatomy to study evidence for evolution depends on
Awọn alaye Idahun
**Comparative anatomy** involves studying the similarities and differences in the anatomy of different species. One of its main purposes in understanding **evolution** is to trace how organisms are related through common ancestry. When we look at the limbs of different animals, some specific features provide essential evidence for evolution.
A key feature often examined is the structure of the limbs of vertebrates, which have evolved to adapt to different environments and modes of living, but share a basic underlying structure. This shared structure is often referred to as the **pentadactyl limb** pattern. The term "pentadactyl" means **five-fingered** or having five digits.
In many vertebrates like humans, whales, bats, and so forth, this **five-fingered** limb structure can be observed, although it has evolved to perform different functions in each species. For example, a human hand, a bat's wing, and a whale's flipper all have the same basic arrangement of bones. This points to the fact that these species share a **common ancestor** and have evolved differently as they adapted to their environments.
Thus, comparative anatomy's focus on the **five-fingered** pattern in limbs is crucial as it provides **evidence** of evolutionary relationships among diverse species, illustrating how they have evolved from a shared ancestry.
Ibeere 21 Ìròyìn
One main feature of trees in the savanna habitat is the possession of
Awọn alaye Idahun
Trees in the savanna habitat have a typical characteristic that helps them survive in the unique conditions of this environment. One of the main features is the possession of thick, corky bark. Savannas often experience seasonal fires during the dry season. A thick, corky bark acts as a protective shield, insulating the tree from the intense heat and preventing damage to the vital inner tissues. This adaptation also helps minimize water loss by reducing evaporation, which is crucial in the savanna's typically dry conditions. Thus, the feature of thick, corky bark is essential for the survival and resilience of trees in the savanna.
Ibeere 22 Ìròyìn
Which of the following plant is found in the ground layer of a tropical rainforest in Nigeria?
Awọn alaye Idahun
In a tropical rainforest, the forest layers are characterized by distinct types of vegetation. The **ground layer** hosts plants and organisms that typically thrive in low-light conditions due to the dense canopy above. Such layers often consist of mosses, ferns, and small plants that can grow with limited sunlight.
When considering the plants listed:
Thus, the answer is **liverwort**, as it appropriately matches the ecological niche of the **ground layer** in a tropical rainforest.
Ibeere 23 Ìròyìn
The bacteria in the large intestine of man synthesizes
Awọn alaye Idahun
The large intestine of humans is home to a diverse community of beneficial bacteria. These bacteria primarily synthesize vitamins, particularly vitamin K and some of the B vitamins, such as B12. They do not typically produce minerals or glucose.
Here's a simple breakdown:
Thus, the correct and simplest answer is that the bacteria in the large intestine primarily synthesize vitamins.
Ibeere 24 Ìròyìn
A community with a population of two million three hundred and ten thousand people living in an area of two thousand three hundred and ten square kilometres has a population density of
Awọn alaye Idahun
To calculate the population density of a region, you need to divide the **total population** by the **area** they are living in. This will give you the number of people per unit area, typically per square kilometer in this case.
Given:
The formula for population density is:
Population Density = Total Population / Area
By plugging in the given values:
Population Density = 2,310,000 / 2,310 = 1,000
This means there are **1,000 people per square kilometer** in this community. Therefore, the correct population density is **1,000**.
Ibeere 25 Ìròyìn
Reproduction in paramecium is by
Awọn alaye Idahun
Paramecium is a single-celled organism that belongs to the group of protists known as ciliates. The primary method of reproduction in paramecium is through binary fission. Let's break down what that means:
Binary Fission: This is a type of asexual reproduction, which means it does not involve the fusion of gametes (sperm and egg). Instead, it is a simple division process in which the organism creates a copy of itself. Here is how it works in paramecium:
This process of binary fission allows paramecia to reproduce quickly and efficiently, leading to exponential population growth under favorable conditions. Unlike other methods like budding, spore formation, or fragmentation, binary fission is a straightforward division of the cell into two identical parts.
Conclusion: Paramecium reproduces mainly by binary fission, a type of asexual reproduction that results in two genetically identical offspring from a single parent organism.
Ibeere 26 Ìròyìn
The feeding relationship between ruminants and the bacteria in their digestive tract is
Awọn alaye Idahun
The feeding relationship between ruminants and the bacteria in their digestive tract is symbiotic. In this type of relationship, both the ruminants and the bacteria benefit from each other.
Here's how it works:
This mutual benefit showcases a symbiotic relationship, where both organisms support each other's survival and wellbeing.
Ibeere 27 Ìròyìn
The depressed side of paramecium which is lined with cilia leads to a tube-like structure called
Awọn alaye Idahun
The depressed side of a paramecium that is lined with cilia leads to a tube-like structure called the buccal cavity, also known as the gullet.
Ibeere 28 Ìròyìn
Blood group AB is considered as universal recipient because they can receive blood from groups
Awọn alaye Idahun
Blood group AB is considered a universal recipient because individuals with this blood type can receive blood from all other blood groups, including A, B, AB, and O. This is possible due to the presence of both A and B antigens on the surface of their red blood cells and the absence of anti-A and anti-B antibodies in their plasma.
Here’s a simple breakdown:
This makes AB blood group the universal recipient as they can accept A, B, AB, and O blood, without experiencing adverse reactions caused by antibody-antigen incompatibility.
Ibeere 29 Ìròyìn
Which of the following factors can lead to overcrowding?
Awọn alaye Idahun
To understand overcrowding, we need to consider factors that increase or decrease a population within a certain area.
High natality refers to a high birth rate. When more individuals are born in an area than those leaving it, the population will naturally increase, potentially leading to overcrowding as the area becomes inhabited by more individuals than it can comfortably support. This is because more births without corresponding departures or deaths means more people vying for the same resources.
Emigration is the process of individuals moving out of a given area to live elsewhere. This movement decreases the population of an area, which would typically help prevent overcrowding rather than cause it. Hence, emigration does not lead to overcrowding.
Competition involves individuals or species competing for limited resources such as food, water, or territory. While it does not directly cause overcrowding, high population density due to overcrowding can intensify competition since more individuals fight for the same scarce resources. Thus, competition is more of a consequence rather than a direct cause of overcrowding.
High mortality means a high death rate. This reduces the number of individuals in a population, which works against overcrowding. With more individuals dying, the population decreases or stabilizes, alleviating pressures that lead to overcrowding.
In summary, among the listed factors, high natality is the most significant contributor to overcrowding as it directly increases population size when not matched by increased emigration or mortality.
Ibeere 30 Ìròyìn
Similar structures that are modified to work in different ways in different organisms are referred to as
Awọn alaye Idahun
Structures that are similar in form and origin but have been **modified** over time to function differently in various organisms are known as **homologous structures**. These structures indicate a common evolutionary ancestor. For example, the forelimbs of humans, bats, whales, and cats have the same basic bone structure but have adapted differently for tasks such as grabbing, flying, swimming, and walking. Each of these organisms developed modifications in their limb structure to suit their environment and lifestyle, which showcases the concept of homologous structures. Unlike **analogous structures** that have similar functions in different organisms but different evolutionary origins, homologous structures emphasize a common ancestry with different functional outcomes.
Ibeere 31 Ìròyìn
Use the diagram above to answer the question that follows:
Recombination of genes at fertilization is represented by the part labelled
Awọn alaye Idahun
During prophase I, homologous chromosomes from each parent pair up and exchange genetic material, a process known as crossing over. This process creates new combinations of genes in the resulting gametes. When two gametes unite during fertilization, the offspring will have a unique combination of DNA.
Genetic recombination during fertilization takes place in the prophase I stage of meiosis ( part labelled III)
Ibeere 32 Ìròyìn
Use the diagram above to answer the questions that follow
The part labelled I is
Awọn alaye Idahun
The part labelled I in the diagram is the oviduct.
To understand why it is the oviduct, let's first understand what an oviduct is. The oviduct, also known as the fallopian tube, is a tube-like structure that connects the ovary to the uterus in female mammals. Its main function is to transport eggs from the ovaries towards the uterus. Fertilization of the egg by sperm typically occurs within the oviduct.
Now, let's look at the structure of the other options:
Placenta: The placenta is an organ that develops in the uterus during pregnancy. It provides oxygen and nutrients to the growing baby and removes waste products from the baby's blood.
Amnion: The amnion is a thin membrane that forms a protective sac filled with amniotic fluid around the developing embryo or fetus.
Uterus: The uterus is a muscular organ where a fertilized egg implants and grows into a fetus during pregnancy.
Based on the description and location given by the diagram, part I is most consistent with the oviduct, as it is likely representing the tube-like structure leading from the ovary to the uterus.
Ibeere 33 Ìròyìn
The oxygen transported to all parts of the body during blood circulation is used for the
Awọn alaye Idahun
The oxygen that is transported to all parts of the body during blood circulation is primarily used for the release of energy from food. This process is also known as cellular respiration.
Here's how it works:
Thus, the presence of oxygen is vital for cells to convert the energy stored in food into a form that can be used for all activities, from metabolic processes to muscle contraction. In summary, the primary purpose of oxygen transportation during blood circulation is for the release of energy from food, which is essential for maintaining life and performing all physiological functions.
Ibeere 34 Ìròyìn
Awọn alaye Idahun
The major buffer in blood is the **bicarbonate buffer system**. The bicarbonate buffer system maintains the pH of the blood and is integral for physiological homeostasis. This system primarily involves **bicarbonate ions (HCO3-)** and works in conjunction with carbonic acid (H2CO3).
In the blood, the bicarbonate buffer system works by a reversible chemical reaction:
CO2 + H2O ⇋ H2CO3 ⇋ HCO3- + H+
Here’s how it functions:
This system is exceptionally effective at buffering rapid changes in pH. The respiratory and renal systems support the bicarbonate buffer system. The lungs regulate the concentration of CO2, and the kidneys control the concentration of HCO3-.
While erythrocytes (red blood cells), leucocytes (white blood cells), and lymph are components of blood, they do not play a primary role in the buffering systems of blood. The bicarbonate buffer system is primarily a chemical buffer that functions independently of these cellular components.
Ibeere 35 Ìròyìn
The cone in the retina of eye is an example of
Awọn alaye Idahun
The cone in the retina of the eye is an example of a cell. Let me explain this further in a simple and comprehensive way:
Our eyes have a part called the retina, which is like a screen at the back of the eye. It captures the images we see and sends them to the brain for processing. The retina contains special cells that help us detect light and color. These are primarily two types: rods and cones.
The cones are specialized cells in the retina responsible for allowing us to see in color. They function under bright light conditions and help us perceive different colors and details. There are three types of cones, each sensitive to: red, green, or blue light. Together, they allow us to see a full spectrum of colors.
Therefore, in the hierarchy of biological organization, a cone is considered a cell, as it is the smallest functional unit that contributes to vision.
Ibeere 36 Ìròyìn
Use the diagram to answer the question that follows
The flower of plants belongs to part labelled
Awọn alaye Idahun
The flower is the reproductive organ of a plant. It is a plant organ, which is defined as a group of tissues that work together to perform a specific function.
Ibeere 37 Ìròyìn
The organisms that adopt swarming as an adaptation to overcome overcrowding are
Awọn alaye Idahun
Among the organisms listed, termites are well-known for adopting swarming as an adaptation to overcome overcrowding.
Here's why:
Swarming in termites is a crucial natural strategy that allows them to efficiently manage their population and ensure the survival and expansion of their colonies.
Ibeere 38 Ìròyìn
Production of healthier offspring, viable seeds and formation of new varieties are good characteristics
Awọn alaye Idahun
Cross-pollination is a type of pollination that produces healthier offspring, viable seeds, and new varieties.
Cross-pollination involves the transfer of pollen from the anther of one flower to the stigma of a different flower. In contrast, self-pollination is when pollen is transferred within a flower or between flowers on the same plant. Self-pollination is effective in a stable environment, but it can lead to weak offspring that are less adapted to the environment.
Ibeere 39 Ìròyìn
Gaseous exchange takes place through the plasma membrane in
Awọn alaye Idahun
Gaseous exchange is a biological process through which different gases are transferred in opposite directions across a specialized respiratory surface. When it comes to simple organisms, this exchange can occur directly through the plasma membrane. The organism where gaseous exchange takes place through the plasma membrane is the paramecium.
Here is a simple explanation:
In conclusion, paramecium utilizes its plasma membrane for gaseous exchange due to its single-celled structure, allowing direct diffusion of gases.
Ibeere 40 Ìròyìn
One of the ways of controlling Schistosomiasis is by
Awọn alaye Idahun
One effective way of controlling Schistosomiasis is by destroying water snails and water weeds.
Schistosomiasis, also known as bilharzia, is a parasitic disease caused by trematode worms of the genus Schistosoma. The life cycle of these parasites heavily involves freshwater snails, which act as intermediate hosts. Here's how the life cycle works:
By destroying water snails and eliminating water weeds, which can provide habitat for these snails, you interrupt the lifecycle of the parasite. This can significantly reduce the risk of transmission to humans. It is crucial to control snail populations in freshwater bodies where human contact is common.
This method, along with other control measures such as providing access to safe water, improving sanitation, and educating communities about safe water practices, plays a crucial role in reducing schistosomiasis transmission. Importantly, to combat the disease effectively, a combination of approaches is usually necessary.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?