Laden....
| 
                             Druk & Houd Vast om te Verslepen  | 
                    |||
| 
                             Klik hier om te sluiten  | 
                    |||
Vraag 1 Verslag
If p = varies inversely as the square of q and p=8 when q=4, find when p=32
Antwoorddetails
P ∝ 1/q 
P = k/q 
K = q2P 
= 428 
∴P = 128/q 
32 = 128/q 
q2 = 128/32 
q2 = 4 
q = √4 = +/-2
Vraag 2 Verslag
If 125x = 2010 find x
Antwoorddetails
125x = 20 
1xX2 + 2xX1 + 5xX0 = 20 
X2 + 2X + 5 = 20 
X2 + 2X - 15 = 0 
(X + 5)( X - 3) = 0 
X + 5 implies X = -5 
X - 3 implies X = 3 
But X cannot be negative 
∴X = 3
Vraag 3 Verslag
Find the mean deviation of 2, 4, 5, and 9
Vraag 4 Verslag
A book seller sells Mathematics and English books. If 30 customers buy Mathematics books, 20 customers buy English books and 10 customers buy the two books, How many customers has he altogether.
Antwoorddetails
n(M) only = 30-10 = 20 
n(E) only = 20-10 = 10 
n(M∩E) = 10 
∴M∪E = 20+10+10 
= 40
Vraag 5 Verslag
If tan θ = 54 find sin2θ - cos2θ
Antwoorddetails
(tan θ 
   = oppadj 
  ) 
|AB|2 = 52 + 42 → 
   |AB|2 = 41 
→ 
   AB = √41 
   sin2θ 
   - cos2θ 
   
→ 
   52√41 
   - (4√412 
  ) = 2541 
   - 1641 
   
= (941 
  ) 
Vraag 6 Verslag
Factorize complete;y (4x+3y)2 - (3x-2y)2
Antwoorddetails
(4x+3y)2 - (3x-2y)2 
(4x+3y+3x-2y)(4x+3y-(3x-2y)) 
(4x+3y+3x-2y)(4x+3y-3x+2y) 
(x+5y)(7x+y)
Vraag 7 Verslag
Make Q the subject of formula when L=43M√PQ
Antwoorddetails
Vraag 8 Verslag
In the diagram above ∠OPQ is
Antwoorddetails
a = a(base ∠s of Iss Δ) 
∴ a+a+74 = 180 
2a + 74 = 180 
2a = 180-74 
2a = 106 
a = 53 
∴∠OPQ = 53∘
Vraag 9 Verslag
The probability of picking a letter T fr4om the word OBSTRUCTION is
Antwoorddetails
OBSTRUCTION 
Total possible outcome = 11 
Number of chance of getting T = 2 
P(picking T) = 2/11
Vraag 10 Verslag
Find the derivative of y=x7−x5x4
Antwoorddetails
Vraag 11 Verslag
Express 1223456 to 3 significant figures
Vraag 12 Verslag
The solution of the quadratic inequality (x2 + x - 12) ≥ 0 is
Antwoorddetails
(x2 + x - 12) ≥ 
   0 , (x - 3)(x + 4) ≥ 
   0 
For the condition to hold, each of (x - 3) and (x + 4) must be of the same sign 
.i.e. x - 3 ≥ 
   0 and x + 4 ≥ 
   0 
or x - 3≤ 
   0 and x + 4 ≤ 
   0 
when x ≥ 
   3, the condition is satisfied 
when x ≥ 
   -4, the condition is not satisfied. 
when x ≤ 
   3, the condition is not satisfied 
when x ≤ 
   -4 , the condition is not satisfied. Thus, the solution of the inequality is x ≥ 
   3 or x ≤ 
   -4 ,
Vraag 13 Verslag
calculate the simple interest on N6,500 for 8 years at 5% per annum.
Vraag 14 Verslag
What is the mean of the data t, 2t-1, t-2, 2t-1, 4t and 2t+2?
Antwoorddetails
Vraag 16 Verslag
The bar chart shows the number of times the word a, and, in, it, he, to appear in a paragraph in a book. What is the ratio of the least frequent word?
Antwoorddetails
| least most = | 3 | = | 1 | 
| 12 | 4 | 
Vraag 17 Verslag
Find the gradient of a line which is perpendicular to the line with the equation 3x + 2y + 1 = 0
Antwoorddetails
3X + 2Y + 1 = 0 
2Y = -3X - 1 
−32X−12 
   
Gradient of 3X + 2Y +1 = 0 is -3/2 
Gradient of a line perpendicular to 3X + 2Y + 1 = 0 
=−1÷32=−1×−23=23
Vraag 18 Verslag
If logx1/264 = 3, find the value of x
Antwoorddetails
If logx1/264 = 3 
(X 1/2)3 = 64 
(X 1/2)3 = 4 3 
X 1/2 = 4 
X = 42 
X = 16
Vraag 19 Verslag
Which of the following angles is an exterior angle of a regular polygon?
Vraag 20 Verslag
The result of rolling a fair die 150 times is as summarized in the table given.
Number123456Frequency1218x302x45
What is the probability of obtaining a 5?
Antwoorddetails
Number123456Frequency1218x302x45 
   
12 + 18 + x + 30 + 2x + 45 = 150 
3x + 105 = 150 
3x = 150 - 105 
3x = 45 
x = 453 
   
x = 15 
probability of 5 = 30150 
   
= 15
Vraag 21 Verslag
Find the range of values of x which satisfy the inequalities 4x - 7 ≤ 3x and 3x - 4 ≤ 4x
Antwoorddetails
4X - 7 ≤ 
   3X and 3X - 4 ≤ 
   4X 
4X - 3X ≤ 
   7 and 3X - 4X ≤ 
   4 
X ≤ 
   7 and -X ≤ 
   4 = X ≥ 
   -4 
Range -4 ≤ 
   x ≤ 
   7
Vraag 22 Verslag
Evaluate (38÷12+12)(18×23+13)
Antwoorddetails
Vraag 23 Verslag
Find the median of 4, 1, 4, 1, 0, 4, 4, 2 and 0
Antwoorddetails
Vraag 24 Verslag
If X = {n2 + 1:n = 0,2,3} and Y = {n+1:n=2,3,5}, find X∩Y.
Vraag 25 Verslag
The bar chart above shows the number of times the word a, and , in, it, the , to appear in a paragraph in a book. What is the ratio of the least frequent word?
Antwoorddetails
Ratio of least to most = 3:12 
= 3/12 
= 1/4
Vraag 26 Verslag
If 2x2 - kx - 12 is divisible by x-4, Find the value of k.
Antwoorddetails
2x2 - kx - 12 is divisible by x-4 
implies x is a factor ∴ x = 4 
f(4) implies 2(4)2 - k(4) - 12 = 0 
32 - 4k - 12 = 0 
-4k + 20 = 0 
-4k = -20 
k = 5
Vraag 27 Verslag
Find the capacity in liters of a cylindrical well of radius 1 meter and depth 14 meters
[π = 22/7]
Antwoorddetails
V = πr2h 
1m = 100cm 
14cm = 1400cm 
∴V=227×100x100x14001000=44,000liters
Vraag 28 Verslag
Solve the quadratic inequalities x2 - 5x + 6 ≥0
Antwoorddetails
x2 - 5x + 6 = 0
(X-2)(X-3) = 0
X-2 = 0 implies X = 2
X-3 = 0 implies X = 3
∴ x ≤ 2, x ≥ 3
Vraag 29 Verslag
Find the minimum value of X2 - 3x + 2 for all real values of x
Antwoorddetails
y = X2 - 3x + 2, dydx 
   = 2x - 3 
at turning pt, dydx 
   = 0 
∴ 2x - 3 = 0 
∴ x = 32 
   
d2ydx2 
   = ddx 
  (ddx 
  ) 
= 270 
∴ ymin = 232 
   - 332 
   + 2 
= 94 
   - 92 
   + 2 
= -14
Vraag 30 Verslag
In the diagram < OPQ is
Vraag 31 Verslag
If 1+√21−√2 
   is expressed in the form of x+y√2 find the values of x and y 
Antwoorddetails
Vraag 32 Verslag
If x - 3 is directly proportional to the square of y and x = 5 when y =2, find x when y = 6.
Antwoorddetails
(x – 3) ∝ y2 
X-3 = Ky2 
K = X-3 / y2 
= 5-2/22 
= 2/4 
= 1/2 
∴X-3 = 1/2y2 
X-3 = 1/2(6)2 
X-3 = 1/2 x 30/1 
X-3 = 18 
X = 21
Vraag 33 Verslag
The fifth term of an A.P is 24 and the eleventh term is 96. Find the first term.
Antwoorddetails
U5 = 24, n = 5 and U11 = 96, n = 11 
Un = a + (n-1)d 
24 = a + (5-1)d imply 24 = a+4d .....eqn1 
96 = a + (11-1)d imply 96 = a+10d ...eqn2 
eqn1 - eqn2 -72 = -6d 
d = 72/6 = 12 
but 24 = a+4d 
24 = a + 4(12) 
24 = a + 48 
a = 24-48 
a = -24
Vraag 34 Verslag
A binary operation on the real set of numbers excluding -1 is such that for all m, n ∈ R, mΔn = m+n+mn. Find the identity element of the operation.
Antwoorddetails
mΔn = m+n+mn 
Let e be the identity element 
∴mΔe = eΔm = m 
m+e+me = m 
e+me = m-m 
e+me = 0 
e(1+m) = 0 
e = 0 / (1+m) 
e = 0
Vraag 35 Verslag
The cost of kerosine per liter increase from N60 to N85. What is the percentage rate of increase?
Antwoorddetails
N85 - N60 = N25 increase 
∴ percentage increase =2560×1001=1253=41.67%=42%
Vraag 36 Verslag
In how many ways can the letters of the word ACCEPTANCE be arranged?
Antwoorddetails
ACCEPTANCE = 10 Letters 
A = 2 letters 
C = 3 letters 
E = 2 letters 
Can be arranged in 10! / (2!3!2!) ways
Vraag 37 Verslag
If x > 0, find the range of number x-3, 3x+2,x-1, 4x, 2x-1, x-2, 2x-2, 3x and 3x+1
Antwoorddetails
x-3, 3x+2,x-1, 4x, 2x-1, x-2, 2x-2, 3x, 3x+1 
Range = 3x+2 - (x-3) 
= 3x+2 - x - 3 
= 2x + 5
Vraag 38 Verslag
A binary operation * is defined on the set of positive integers is such x*y = 2x-3y+2 for all positive integers x and y. The binary operation is
Antwoorddetails
X * Y = 2X - 3Y + 2 
2*3 = 2(2) - 3(3) + 2 
=4-9+2 
= -3 
But -3 does not belong to positive integer
Vraag 39 Verslag
Evaluate ∫π2−π2cosxdx
Antwoorddetails
∫π2−π2cosxdx=[sinx]π2−π2=sinπ2−sin−π2 
   
= sin90 – sin-90 
= sin90 – sin270 
= 1 – (-1) 
= 1+1 
= 2
Vraag 40 Verslag
The result of rolling a fair die 150 times is ass summarized in the table above. What is the probability of obtaining a 5
Antwoorddetails
Total possible outcome 
12+18+x+30+2x+45 = 105+3x 
∴105+3x = 150 
3x = 150-105 
3x = 45 
x = 15 
P(obtaining 5) =2x(105+3x)Butx=15=2(15)(105+3(15))=30(105+45)=30150=15
Vraag 41 Verslag
Find the area of the figure above
[π = 22/7]
Antwoorddetails
Area of the figure = Area of rect + area of semi circle 
=L×h+12πr25×15+12×227×(52)2=75+(22×25)2×7=75+92328=84.8cm
Vraag 42 Verslag
Add 11012,101112 and 1112 
Vraag 43 Verslag
Find the minimum value of the function y = x(1+x)
Antwoorddetails
Vraag 44 Verslag
The locus of a point equidistant from two points p(6,2) and R(4,2) is a perpendicular bisector of PR passing through
Antwoorddetails
Vraag 45 Verslag
Evaluate ∫21(6x2−2x)dx
Antwoorddetails
∫21(6x2−2x)dx=[6x33−2x22]21=[2x3−x2]21 
   
= [2(2)3 - (2)2] – [2(1)3 - (1)2] 
= [16-4] – [2-1] 
= 12 – 1 
= 11
Vraag 46 Verslag
Differentiate sin x - x cos x
Antwoorddetails
sin x - x cos x 
dy/dx = cos x - [1.cos x + x -sin x] 
= co x - [cos x - x sin x] 
= cos x - cos x + x sin x 
= x sin x
Vraag 47 Verslag
simplify 16−12×4−12×2713
Antwoorddetails
Vraag 48 Verslag
Find the number of ways of selecting 6 out of 10 subjects for an examination
Antwoorddetails
Vraag 49 Verslag
Find the area of the figure given
Antwoorddetails
Area of semicircle + Area of rectangle
A = 12πr2 + LB
A = 12×2277×(52)2+(15×5)
= 12×227×254+75
A = 27528+751
275+210028=237528
A = 84.8cm2
Vraag 50 Verslag
In the diagram, find the size of the angle marked ao
Antwoorddetails
2 x s = 280o(Angle at centre = 2 x < at circum)
S = 280o2
= 140
< O = 360 - 280 = 80o
60 + 80 + 140 + a = 360o
(< in a quad); 280 = a = 360
a = 360 - 280
a = 80o
Wilt u doorgaan met deze actie?