Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
A body is whirled in a horizontal circle at the rate of 800 revolutions per minute. Determine the angular velocity
Answer Details
To determine the angular velocity of a body whirled in a horizontal circle at a rate of 800 revolutions per minute (rpm), we need to convert this to the standard unit of angular velocity, which is radians per second (rad/s).
Here’s how you can calculate it:
Now let's perform the conversion:
Rounding up the decimal to a consistent significant figure, the angular velocity is approximately 26.7π radians per second.
Question 2 Report
When a charged ebonite rod is brought near a charged glass rod, there will be
Answer Details
When a charged ebonite rod is brought near a charged glass rod, there will be attraction. This is because charged objects obey the fundamental principle of electrostatics, which states that opposite charges attract each other while like charges repel each other.
An ebonite rod typically acquires a negative charge when rubbed with fur, as it gains electrons. In contrast, a glass rod usually acquires a positive charge when rubbed with silk, as it loses electrons. Therefore, when these two objects, one negatively charged and the other positively charged, are brought near each other, the opposite charges will attract.
Question 3 Report
The degree of precision of a vernier caliper is
Answer Details
The degree of precision of a vernier caliper is actually the **smallest value** that the vernier scale can measure, which can be considered as the resolution or least count of the instrument. The degree of precision for most standard vernier calipers is 0.01 cm (or 0.1 mm). This means that the caliper can measure dimensions down to a hundredth of a centimeter.
To understand why this is the case, consider the construction of a vernier caliper:
This alignment allows more precise measurements than the main scale alone. If the vernier scale has 10 divisions which coincide over a length equal to 9 divisions on the main scale, then each division of the vernier scale represents an extra 0.01 cm. Therefore, it allows measuring smaller intervals between the main scale markings very precisely.
Thus, you won't find vernier calipers with a degree of precision of 0.005 cm, 0.1 cm, or 1.0 cm as options in standard practice for precise measurement tools.
Question 4 Report
An ideal transformer has
Answer Details
An ideal transformer is a hypothetical concept used in electrical engineering to simplify the analysis of real transformers. In an ideal transformer, several assumptions are made to avoid losses and inefficiencies. Here's what an ideal transformer has:
No flux leakage: In an ideal transformer, it is assumed that all the magnetic flux generated in the primary coil is perfectly linked with the secondary coil. This means there is no flux leakage. This assumption ensures maximum efficiency, as all the energy is transferred from the primary to the secondary coil without losses.
Let's briefly discuss the other concepts to understand why they don't pertain to an ideal transformer:
Maximum primary resistance: In an ideal transformer, the resistance of the windings is assumed to be zero. If the primary has maximum resistance, it would result in power loss due to the resistance, contradicting the idea of an ideal transformer.
Hysteresis: This refers to the energy loss that happens in the core material due to the cyclic magnetization and demagnetization processes. An ideal transformer assumes there is no hysteresis loss, meaning the core material does not absorb any energy during these cycles.
Eddy current: These are loops of electric current induced within conductors by a changing magnetic field, which can cause significant energy loss. In an ideal transformer, it is assumed that there are no eddy currents, hence no energy loss due to this effect.
In summary, an ideal transformer is characterized by having no flux leakage, and it assumes that there are no losses due to resistance, hysteresis, or eddy currents. This makes the ideal transformer a perfect, lossless device for the purposes of theoretical analysis.
Question 5 Report
The acceleration of a free fall due to gravity is not a constant everywhere on the Earth's surface because
Answer Details
The elliptical shape of the Earth: The Earth is not a perfect sphere; it is slightly flattened at the poles and bulging at the equator. This shape causes variations in gravitational acceleration.
Question 6 Report
A force of 10N extends a spring of natural length 1m by 0.02m, calculate the length of the spring when the applied force is 40N.
Answer Details
To solve this problem, we will use Hooke's Law. Hooke's Law states that the force needed to extend or compress a spring by some distance is proportional to that distance. Mathematically, it is represented as:
F = k * x
where:
Firstly, we need to find the spring constant k. We know that a force of 10N extends the spring by 0.02m. Therefore, using Hooke's Law:
10N = k * 0.02m
From this, we can solve for k:
k = 10N / 0.02m = 500N/m
Now that we have determined the spring constant, let's calculate the extension caused by a force of 40N:
Using Hooke's Law again:
F = k * x
40N = 500N/m * x
Solving for x:
x = 40N / 500N/m = 0.08m
This means that the spring is extended by 0.08m when a force of 40N is applied. Therefore, the length of the spring (natural length plus extension) becomes:
1.00m + 0.08m = 1.08m
Thus, the **length** of the spring when the applied force is 40N is 1.08m.
Question 7 Report
When thermal energy in a solid is increased, the change in state is called
Answer Details
When the thermal energy in a solid is increased, the solid particles gain energy and begin to vibrate more vigorously. As the temperature rises, these particles eventually have enough energy to overcome the forces holding them in their fixed positions. This leads to a change of state from a solid to a liquid. This process is known as melting.
To further understand this, imagine an ice cube. As it absorbs heat, it gains energy, and the ice (which is a solid) starts to turn into water (which is a liquid). This transition is what we refer to as melting.
Thus, the term that describes this change of state, when a solid is heated and turns into a liquid, is melting.
Question 8 Report
Calculate the magnetic force on an electron in a magnetic field of flux density 10T, with a velocity of 3 x 107 m/s at 60º to the magnetic field (e = 1.6 x 10−19 C)
Answer Details
The magnetic force on an electron in a magnetic field (F) = q v Bsinθ
B = 10T, q = 3 x 107 m/, θ = 60º and q = 1.6 x 10−19 C
F = 1.6 x 10−19 x 3 x 107 x 10 x sin 60º ≊ 4.162 × 10−11 N
Question 9 Report
The total number of ATP produced during glycolysis is
Answer Details
During the process of glycolysis, a single glucose molecule is broken down into two molecules of pyruvate. During this metabolic pathway, there is a net gain of adenosine triphosphate (ATP) molecules. To understand how many ATP molecules are produced, let's break it down step by step.
1. **Initial ATP Investment:** Glycolysis initially requires an investment of 2 ATP molecules to phosphorylate glucose and convert it into a more reactive form during the early stages of the glycolytic pathway.
2. **ATP Production:** As glycolysis progresses, a total of 4 ATP molecules are produced. This occurs in the later steps of the pathway where adenosine diphosphate (ADP) is phosphorylated to form ATP. This is known as substrate-level phosphorylation.
3. **Net ATP Gain:** To find out the net gain of ATP through glycolysis, simply subtract the initial ATP investment from the total ATP produced:
Net ATP = Total ATP produced - Initial ATP investment
Net ATP = 4 ATP - 2 ATP
Net ATP = 2 ATP
Thus, the net total number of ATP produced during glycolysis is 2 molecules.
Question 10 Report
The energy stored in the above capacitor is
Answer Details
The energy stored in the capacitor = 12 q2C
Where C = 2F, q = 3C
= 12 322 = 94 = 2.25J
Question 11 Report
A wheelbarrow inclined at 60º to the horizontal is pushed with a force of 150N. What is the horizontal component of the applied force
Answer Details
When you push a wheelbarrow inclined at an angle to the horizontal, the applied force can be divided into two components: a **horizontal component** and a **vertical component**. To find the horizontal component of the force, you need to use the concept of resolving vectors.
The force of 150N is acting at an angle of 60º to the horizontal. The horizontal component of this force can be calculated using the cosine of the angle. The formula to determine the horizontal component \( F_{\text{horizontal}} \) is given by:
Fhorizontal = Fapplied \times \cos(\theta)
Where:
Substitute the values into the formula:
Fhorizontal = 150N \times \cos(60º)
We know that \(\cos(60º)\) equals 0.5.
Therefore:
Fhorizontal = 150N \times 0.5 = 75N
Thus, the **horizontal component** of the applied force is 75N.
Question 12 Report
A hydrometer of mass y kg and volume 2y x 10−5 m3 floats in a fluid with 20% of its volume above the fluid, what is the density of the fluid?
Answer Details
To find the density of the fluid, we need to apply the principle of floatation, which states that the weight of the fluid displaced by the submerged part of the object is equal to the weight of the object. Let's walk through the steps:
Step 1: Understand the volume submerged
The hydrometer has a total volume of 2y x 10-5 m3. It floats with 20% of its volume above the fluid. Hence, 80% of its volume is submerged in the fluid.
Submerged Volume, Vsub = (0.80) x (2y x 10-5 m3) = 1.6y x 10-5 m3
Step 2: Apply the principle of floatation
The weight of the fluid displaced equals the weight of the hydrometer.
Weight of hydrometer = Mass x Gravity = y kg x g (where g is the acceleration due to gravity). For the purpose of calculations, g can be considered as 9.81 m/s2.
Weight of displaced fluid = Density of fluid (ρfluid) x Submerged Volume x g
According to the principle of floatation:
y x g = ρfluid x 1.6y x 10-5 m3 x g
g is common on both sides and can be canceled out:
y = ρfluid x 1.6y x 10-5
Step 3: Solving for the density of the fluid
ρfluid = y / (1.6y x 10-5)
The y on both numerator and denominator cancels out:
ρfluid = 1 / (1.6 x 10-5)
ρfluid = 6.25 x 104 kg/m3
Thus, the density of the fluid is 6.25 x 104 kg/m3.
Question 13 Report
A sonometer's fundamental note is 50Hz, what is the new frequency when the tension is four times the original?
Answer Details
To solve this problem, we need to understand the relationship between tension and frequency in a sonometer wire. The frequency of a vibrating string, such as one in a sonometer, is directly proportional to the square root of the tension in the string. Mathematically, this relationship is expressed as:
f ∝ √T
Where f is the frequency and T is the tension. In the given problem, the original frequency is 50 Hz, and the tension is increased to four times its original value. Let's analyze how this change in tension affects the frequency:
- Original tension = T
- New tension = 4T
Substitute the new tension into the formula:
f_new = 50 Hz × √(4T/T)
Simplify the equation:
f_new = 50 Hz × √4
f_new = 50 Hz × 2
f_new = 100 Hz
Thus, when the tension is four times the original tension, the new frequency of the sonometer's fundamental note becomes 100 Hz.
Question 14 Report
The food nutrient with the highest energy value is
Answer Details
Fat is the food nutrient with the highest energy value, providing 9 calories per gram, while carbohydrates and proteins provide 4 calories per gram.
Fat is the body's most concentrated source of energy, providing more than twice as much potential energy as carbohydrates or proteins.However, carbohydrates burn fastest in metabolism. Fats are a type of lipid. Lipids are a group of organic compounds that are insoluble in water but soluble in organic solvents. Fats are solid at room temperature, while oils are liquid at room temperature.
Therefore, the correct answer is option C.
Question 15 Report
A mass of gas at 40mmHg is heated from 298k to 348k at constant volume. Cal the pressure exerted by the gas.
Answer Details
To determine the new pressure exerted by the gas when it is heated, we'll apply **Gay-Lussac's Law**. This law states that at constant volume, the pressure of a given amount of gas is directly proportional to its absolute temperature. Mathematically, it can be expressed as:
P1/T1 = P2/T2
Where:
By rearranging the formula to solve for the final pressure (P2), we get:
P2 = P1 * (T2/T1)
Now, insert the given values into the equation:
P2 = 40 mmHg * (348 K / 298 K)
Perform the calculations:
P2 = 40 mmHg * (348 / 298)
P2 = 40 mmHg * 1.1678
P2 = 46.71 mmHg
So, the new pressure exerted by the gas when it is heated from 298 K to 348 K at constant volume is 46.71 mmHg.
Question 16 Report
The dimension of young's modulus,E is given by
Answer Details
Young's modulus, denoted by E, is a measure of the stiffness of a solid material. It is defined as the ratio of stress to strain in a material that is behaving elastically. Stress is the force applied per unit area, and strain is the deformation experienced by the material in response to the applied stress.
Let's break down the dimensions for Young's modulus:
Stress: Stress is defined as force per unit area. Thus, the dimension of stress can be expressed as:
Stress = Force / Area
The dimension of force is given by mass × acceleration, i.e., Force = MLT-2 (where M is mass, L is length, and T is time).
The dimension of area is length × length = L2.
Therefore, the dimension of stress is:
Stress = (MLT-2) / (L2) = ML-1T-2
Strain: Strain is the ratio of the change in length to the original length and is dimensionless because it is a ratio of two lengths.
Thus, the dimension of strain is simply 1 (dimensionless).
Since Young's modulus is the ratio of stress to strain, its dimension is the same as that of stress. Therefore, the dimension of Young’s modulus E is:
ML-1T-2
Question 17 Report
Using the diagram above, the effective force pushing it forward at an angle 60º is
Answer Details
To determine the effective force pushing the object forward at an angle of 60º, we need to resolve the given force into its components. Specifically, we are interested in the horizontal component of the force, as this is the part that effectively pushes the object forward.
The general formula to calculate the horizontal component of a force (Fx) when the force is applied at an angle (θ) is:
Fx = F * cos(θ)
Where:
Assuming the magnitude of the force applied (F) is 50N, then the effective forward force can be calculated as follows:
Fx = 50N * cos(60º)
Using the trigonometric value:
cos(60º) = 0.5
Therefore:
Fx = 50N * 0.5
Fx = 25N
Hence, the effective force pushing it forward at an angle of 60º is 25.00N. Therefore, the correct answer is 25.00N.
Question 18 Report
The gravitational force between two objects masses 1024 kg and 1027 kg is 6.67N. Calculate the distance between them [ G = 6.6 x 10−11 Nm2 kg−2 ]
Answer Details
To calculate the distance between two objects based on the gravitational force acting between them, we need to use the formula for gravitational force:
F = (G * m1 * m2) / r²
Where:
We need to compute r by rearranging the formula:
r² = (G * m1 * m2) / F
Therefore, the distance r is:
r = √((G * m1 * m2) / F)
Substitute the given values into the equation:
r = √((6.6 x 10-11 Nm²/kg² * 1024 kg * 1027 kg) / 6.67 N)
Calculating inside the square root:
G * m1 * m2 = 6.6 x 10-11 * 1024 * 1027 = 6.6 x 1040 Nm²
Then divide by the force:
6.6 x 1040 Nm² / 6.67 N = 0.99 x 1040 m²
Finally, calculate the square root:
r = √(0.99 x 1040)
r ≈ 1.0 x 1020 m
Therefore, the distance between the two objects is approximately 1.0 x 1020 m.
Question 19 Report
An example of a non-rechargeable cell is
Answer Details
A non-rechargeable cell, commonly known as a primary cell, is a type of chemical battery that is designed to be used once until the chemical reactions that produce electricity are exhausted. After this point, the cell cannot be reversed or recharged.
In the given examples, the dry leclanche cell is a well-known example of a non-rechargeable cell. It is commonly used in everyday devices like remote controls, wall clocks, and torches. This cell type utilizes zinc and manganese dioxide as electrodes and relies on a moist paste of ammonium chloride for the electrolyte.
The other examples, such as nickel iron, mercury cadmium, and lead-acid, involve rechargeable cells (secondary cells) that are specifically designed to endure multiple charges and discharges throughout their useful life. Thus, unlike the dry leclanche cell, these can be recharged after use.
Therefore, the dry leclanche cell is an ideal example of a non-rechargeable cell because it can only be used once. After depletion, it cannot be recharged or reused.
Question 20 Report
The equivalent capacitance of the capacitors in the circuit above
Answer Details
apacitance in parallel = one at the top + one under = 2C
The two in the middle are in series = C2
The equivalent capacitance of the capacitors in the circuit above = C2 + 2C = 52 C
Question 21 Report
A body is pulled on a horizontal surface with a rope inclined at 30º to the vertical. If the effective force pulling the body along the horizontal surface is 15N, calculate the tension on the rope.
Answer Details
In this problem, the tension in the rope results in a force that acts to pull the body along the horizontal surface. The rope is inclined at 30º to the vertical, which means it makes an angle of 60º with the horizontal since the total angle between vertical and horizontal is 90º.
To find the tension in the rope, we first understand that the component of the tension force acting along the horizontal surface is given by the formula:
F_horizontal = Tension * cos(θ)
Where:
Given that F_horizontal = 15N, we substitute into the equation:
15N = Tension * cos(60º)
We know that cos(60º) = 0.5, therefore:
15N = Tension * 0.5
To find the Tension, divide both sides of the equation by 0.5:
Tension = 15N / 0.5
Tension = 30N
Therefore, the tension in the rope is 30N.
Question 22 Report
Using the diagram above, calculate the relative density of x, if the density of methanol is 800kgm−3
Answer Details
density of methanol = 800kgm−3 → 0.8gcm−3
At equilibrium, the density of methanol = the density of liquid x
ρ x h x g = ρ x x hx x g
0.8 x 7.1 = ρ x x 14.2
ρ x = 0.8×7.114.2 = 0.4gcm−3
∴ , the relative density of liquid x = 0.4
Relative density of X = density of liquid xdensity of methanol = 0.40.8 = 0.5
Question 23 Report
When a cell of e.m.f 3.06V is connected, the balance of a potentiometer is 75cm, Calculate the new balance of a cell of e.m.f 2.295V
Answer Details
To solve this problem, we first need to understand the principle behind a potentiometer. A potentiometer is a device used to measure the electromotive force (e.m.f) of a cell by comparing it with a known voltage. The balance length on a potentiometer corresponds to a proportional measurement of the e.m.f.
Let's denote:
- \( V_1 \): the e.m.f of the first cell = 3.06V
- \( l_1 \): the balance length for the first cell = 75 cm
- \( V_2 \): the e.m.f of the second cell = 2.295V
- \( l_2 \): the balance length for the second cell (which we need to find)
The basic relationship for a potentiometer is given by:
\( V_1 / V_2 = l_1 / l_2 \)
Substituting the given values:
\( 3.06 / 2.295 = 75 / l_2 \)
We need to solve for \( l_2 \):
\( l_2 = (2.295 \times 75) / 3.06 \)
Now, calculating the above expression:
\( l_2 = 171.975 / 3.06 \approx 56.26 \) cm
Therefore, the new balance length for the cell with an e.m.f of 2.295V is approximately 56.26 cm.
Question 24 Report
What is the inductance reactance of a coil of 7H when connected to a 50Hz a.c circuit?
Answer Details
To determine the inductive reactance of a coil, we use the formula:
Inductive Reactance (XL) = 2πfL
Where:
Given:
Substituting the given values into the formula:
XL = 2 × π × 50 × 7
Calculating this:
XL = 2 × 3.14159 × 50 × 7
XL ≈ 2 × 3.14159 × 350
XL ≈ 2 × 1099.557
XL ≈ 2199.114
Therefore, the inductive reactance of the coil is approximately 2200Ω.
Question 25 Report
Using the circuit above, at resonance
Answer Details
To understand the concept of resonance in an electrical circuit, it is crucial to know that resonance occurs when the inductive reactance and capacitive reactance are equal in magnitude. This typically happens in a series RLC (Resistor, Inductor, Capacitor) circuit. At resonance, the impedance of the circuit is purely resistive, meaning the circuit behaves as if it only contains a resistor. As a result, the voltages across the inductor and capacitor can be compared at resonance.
In this particular situation, the voltage across the inductor (VL) and the voltage across the capacitor (VC) are of interest due to their roles in resonance:
Thus, the correct expression of interest in relation to resonance is VL = VC, which indicates that the voltage across the inductor is equal in magnitude but opposite in phase to the voltage across the capacitor.
Question 26 Report
Infra-red thermometers work by detecting the
Answer Details
Infra-red thermometers work by detecting the radiation from the body and converting it to temperature. These thermometers are designed to measure the infrared radiation, also known as heat radiation, emitted by objects. All objects with a temperature above absolute zero emit infrared radiation. The thermometer's sensor captures this radiation and converts it into an electrical signal that can be read as a temperature measurement. This method allows for quick, non-contact temperature readings, which is why infrared thermometers are often used in medical settings, industrial applications, and more.
Question 27 Report
A practical application of total internal reflection is found in
Answer Details
A practical application of total internal reflection is found in fiber optics.
To understand this, let's break it down:
When light travels from one medium to another (such as from glass to air), it changes direction. This is known as refraction. However, there is a phenomenon called total internal reflection which occurs when light is traveling within a denser medium towards a less dense medium (like from glass to air) and hits the boundary at an angle greater than a certain critical angle. Instead of passing through, the light is completely reflected back into the denser medium.
Fiber optics technology makes use of this principle. In fiber optics, light is transmitted along the core of a thin glass or plastic fiber. The core is surrounded by another layer called the cladding. This cladding has a lower refractive index than the core, which facilitates total internal reflection. As a result, the light continuously reflects internally along the length of the fiber, allowing it to travel long distances with minimal loss.
This property is harnessed in various applications such as in high-speed telecommunication systems, medical equipment like endoscopes, and other technologies that require the transmission of data over long distances with high efficiency.
Question 28 Report
An accumulator is 90% efficient. If it gives out 2700J of energy while discharging, how much energy does it take in?
Answer Details
In order to find out how much energy the accumulator takes in, given that it is 90% efficient and gives out 2700J of energy, we can use the formula for efficiency:
Efficiency = (Useful Energy Output / Total Energy Input) × 100%
Given:
Efficiency = 90%
Useful Energy Output = 2700J
We need to calculate the Total Energy Input (how much energy the accumulator takes in). Rearranging the formula to solve for Total Energy Input, we get:
Total Energy Input = Useful Energy Output / Efficiency
Substitute the known values:
Total Energy Input = 2700J / 0.9
Calculate the input:
Total Energy Input = 3000J
Therefore, the accumulator takes in 3000J of energy.
Question 29 Report
Calculate the power of an object which moves through a distance of 500cm in 1s on a frictionless surface by a horizontal force of 50N
Answer Details
To calculate the power of an object, we need to use the formula for power in terms of work done over time. The formula is:
Power (P) = Work Done (W) / Time (t)
First, let's find the work done on the object. Work done can be calculated using the formula:
Work Done (W) = Force (F) × Distance (d)
Given:
Substituting the values into the formula for work done, we get:
Work Done (W) = 50 N × 5 m = 250 Joules
Next, we consider the time it took for the object to move this distance:
Now, substituting the work done and time into the power formula:
Power (P) = 250 Joules / 1 s = 250 Watts
Thus, the power of the object is 250 Watts.
Question 30 Report
What will be the weight of a man of mass 60kg standing in a lift if the lift is descending vertically at 3ms2 ?
Answer Details
To find the apparent weight of a man of mass 60 kg standing in a descending lift, we first need to understand the concept of apparent weight. Apparent weight is the force that the man feels as his weight due to the reaction of the lift floor on him. When the lift accelerates, the apparent weight changes from his actual weight.
In this case, the lift is descending with a constant velocity of 3 m/s2. Since the acceleration is downward, it means the lift is accelerating negatively compared to an upward acceleration.
The formula to find the apparent weight (Wapparent) when in a lift is:
Wapparent = m(g - a)
Where:
Substituting these values into the formula, we get:
Wapparent = 60 (9.8 - 3)
Calculating further:
Wapparent = 60 × 6.8
Wapparent = 408 N
The closest option to 408 N in the answers provided is 420 N. Therefore, the correct answer is 420 N.
Question 31 Report
The moon's acceleration due to gravity is 16 of the earth's value. The weight of a bowling ball on the moon would be
Answer Details
To determine the weight of a bowling ball on the moon, we need to understand the relationship between weight, gravity, and mass.
Weight is the force exerted by gravity on an object. On Earth, this force depends on the object's mass and the acceleration due to gravity, which is approximately 9.8 m/s². Weight can be calculated using the formula:
Weight = Mass x Gravity
On the moon, the acceleration due to gravity is only 1/6 of Earth’s gravity. This means the gravitational pull on the moon is much weaker compared to the Earth. If we take the Earth's gravity to be 9.8 m/s², the moon's gravity would be:
Moon's Gravity = (9.8 m/s²) x (1/6) ≈ 1.63 m/s²
Given that the weight of an object is directly proportional to the gravitational force, the weight of an object on the moon would be substantially less than its weight on Earth. Thus, the weight of the bowling ball on the moon would be:
Weight on Moon = (Mass) x (1.63 m/s²) = 1/6 of its weight on Earth
Therefore, the weight of a bowling ball on the moon is 1/6 of its weight on Earth.
Question 32 Report
Which of the following measuring instruments operates based on the heating effect of electric current?
Answer Details
Hot wire ammeters measure current by detecting the heat produced in a wire due to the electric current flowing through it.
Question 33 Report
Inbreeding is highly discouraged in humans because it may
Answer Details
Inbreeding is the process where closely related individuals, like cousins or siblings, mate and produce offspring. **This practice is highly discouraged in humans for several reasons, but a significant concern is the potential for an outbreak of hereditary diseases.**
Here’s why inbreeding is problematic:
Therefore, **to promote genetic diversity and reduce the risk of hereditary diseases in offspring, inbreeding is discouraged in human populations**. This way, offspring are less likely to inherit harmful genetic combinations that can lead to health problems.
Question 34 Report
When a bus is accelerating, it must be
Answer Details
When a bus is accelerating, it is primarily changing its velocity. This is because velocity is a vector quantity, which means it includes both the speed and the direction of the object's movement. Acceleration refers to any change in this velocity. Therefore, the bus could be increasing its speed, decreasing its speed (which is also known as deceleration), or changing its direction. All these aspects involve a change in velocity.
Let's break it down further:
Changing its Speed: If the bus is speeding up or slowing down, it results in a change in the magnitude of its velocity, contributing to acceleration.
Changing its Direction: Even if the bus maintains a constant speed, if it changes direction (like taking a turn), its velocity is altered because direction is a part of velocity. This results in acceleration.
Changing its Position: While a change in position happens during acceleration, it is not the defining feature of acceleration. An object can change its position even if it is moving with constant velocity and not accelerating.
So, the key component here for acceleration is the change in velocity, which encompasses changes in speed, direction, or both.
Question 35 Report
An effort of 40N is applied on a machine to lift a mass of 60kg. Determine the mechanical advantage of the machine [ g = 10ms2 ]
Answer Details
To determine the Mechanical Advantage (MA) of a machine, we use the formula:
MA = Load / Effort
Here, the Load is the weight of the mass being lifted, and the Effort is the force applied on the machine.
First, we need to calculate the Load. The Load is obtained by multiplying the mass of the object by the acceleration due to gravity (g = 10 m/s2).
So, the Load (weight of the mass) is:
Load = Mass × Gravity = 60 kg × 10 m/s2 = 600 N
The Effort given is 40 N.
Now, we can calculate the Mechanical Advantage:
MA = Load / Effort = 600 N / 40 N = 15
Therefore, the Mechanical Advantage of the machine is 15.
Question 36 Report
The gravitational force between two objects is 10N, what is the new value of the force if the distance between them is halved?
Answer Details
The gravitational force between two objects is determined by Newton's Law of Universal Gravitation, which can be expressed by the formula:
F = G * (m1 * m2) / r²
where F is the gravitational force, G is the gravitational constant, m1 and m2 are the masses of the objects, and r is the distance between the centers of the two objects.
In this problem, it is given that the initial gravitational force is 10N. According to the formula, the gravitational force is inversely proportional to the square of the distance between the two objects.
So, if the distance between the objects is halved (i.e., r becomes r/2), then the new gravitational force F' can be calculated based on the relationship:
F' = G * (m1 * m2) / (r/2)² = G * (m1 * m2) / (r²/4) = 4 * (G * m1 * m2 / r²) = 4 * F
Since the initial force F was 10N, the new force F' when the distance is halved is:
F' = 4 * 10 = 40N
Thus, the new value of the gravitational force is 40N.
Question 37 Report
I clear II sharp III poor IV dark
Which of the above happens when the hole of a pinhole camera is diminished?
Answer Details
A pinhole camera is a simple camera device that uses a tiny hole to project an inverted image of the scene in front of it onto a surface at the back of the camera. When you diminish the hole of a pinhole camera, meaning you make the hole smaller, a few effects occur on the resulting image. Here’s what happens:
Therefore, reducing the size of the pinhole in a pinhole camera results in the image becoming both darker and sharper.
Answer: II only (The image becomes sharper.)
Question 38 Report
Calculate the upthrust on a spherical ball of volume 4.2 x 10−4 m3 when totally immersed in a liquid of density 1028kgm−3
Answer Details
Upthrust(Force) = volume of object x density of liquid x g = V x ρ x g
U = 4.2 x 10−4 x 1028 x 10 ≊ 4.3N
Question 39 Report
Answer Details
In a series resonant circuit, the current flowing in the circuit is at its maximum. Let me explain why:
In a series resonant circuit, we have a resistor (R), inductor (L), and capacitor (C) connected in series with an AC source. At a particular frequency called the resonant frequency, these circuits exhibit some unique characteristics. This resonant frequency is determined by the values of the inductor and capacitor and is given by the formula:
f₀ = 1 / (2π√(LC))
At the resonant frequency:
Thus, in a series resonant circuit, when it is operating at its resonant frequency, the current flowing is at its maximum.
Question 40 Report
The formation of cilia and flagella in living cells is carried out with the help of
Answer Details
The formation of cilia and flagella in living cells is primarily carried out with the help of **centrioles**.
Here's a simple explanation:
Centrioles are cylindrical structures made up of microtubules. They are found in eukaryotic cells and play a critical role in cell division and the organization of the cell's cytoskeleton. However, their role extends beyond this to the formation of the basal bodies which seed the growth of cilia and flagella.
Cilia and flagella are microscopic, hair-like structures that protrude from the surface of certain eukaryotic cells. They are primarily involved in movement. Cilia often work like tiny oars, moving fluid across the cell's surface or propelling single-celled organisms. Flagella are typically longer and move in a whip-like fashion to propel cells, such as sperm cells.
Here's how centrioles contribute to the formation of these structures:
1. **Basal Body Formation**: Each cilium or flagellum grows out from a structure known as a basal body. The basal body is derived from the centrioles. During this process, a centriole migrates to the cell's surface and acts as a nucleation site for the growth of microtubules, which in turn form the structural core of cilia and flagella.
2. **Microtubule Organization**: The centrioles help organize microtubules in a "9+2" arrangement, which is characteristic of cilia and flagella. This refers to nine pairs of microtubules forming a ring around two central microtubules, giving these structures both stability and flexibility for movement.
Thus, centrioles are crucial as they provide the groundwork for the formation and proper functioning of cilia and flagella. They ensure that these structures are assembled correctly and are able to carry out their roles in cell movement and fluid transport.
Would you like to proceed with this action?