Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
A mass of gas at 40mmHg is heated from 298k to 348k at constant volume. Cal the pressure exerted by the gas.
Answer Details
To determine the new pressure exerted by the gas when it is heated, we'll apply **Gay-Lussac's Law**. This law states that at constant volume, the pressure of a given amount of gas is directly proportional to its absolute temperature. Mathematically, it can be expressed as:
P1/T1 = P2/T2
Where:
By rearranging the formula to solve for the final pressure (P2), we get:
P2 = P1 * (T2/T1)
Now, insert the given values into the equation:
P2 = 40 mmHg * (348 K / 298 K)
Perform the calculations:
P2 = 40 mmHg * (348 / 298)
P2 = 40 mmHg * 1.1678
P2 = 46.71 mmHg
So, the new pressure exerted by the gas when it is heated from 298 K to 348 K at constant volume is 46.71 mmHg.
Question 2 Report
The degree of precision of a vernier caliper is
Answer Details
The degree of precision of a vernier caliper is actually the **smallest value** that the vernier scale can measure, which can be considered as the resolution or least count of the instrument. The degree of precision for most standard vernier calipers is 0.01 cm (or 0.1 mm). This means that the caliper can measure dimensions down to a hundredth of a centimeter.
To understand why this is the case, consider the construction of a vernier caliper:
This alignment allows more precise measurements than the main scale alone. If the vernier scale has 10 divisions which coincide over a length equal to 9 divisions on the main scale, then each division of the vernier scale represents an extra 0.01 cm. Therefore, it allows measuring smaller intervals between the main scale markings very precisely.
Thus, you won't find vernier calipers with a degree of precision of 0.005 cm, 0.1 cm, or 1.0 cm as options in standard practice for precise measurement tools.
Question 3 Report
288KJ is conducted across two opposite faces of a 3m cube of temperature gradient 90ºCm−1 in 7200s. Calculate the thermal conductivity.
Answer Details
The thermal conductivity of a material is a measure of its ability to conduct heat. It is defined by the formula:
Q = k × A × ΔT/Δx × t
Where:
We are given:
The cube has each side measuring 3 meters, so the area A of one face (since heat is conducted across two opposite faces, effectively using one face area for calculation) is:
A = 3m × 3m = 9 m2
Now, we need to solve for k (thermal conductivity):
Q = k × A × ΔT/Δx × t
288,000 J = k × 9 m2 × 90 ºC/m × 7,200 s
k = 288,000 / (9 × 90 × 7,200)
Calculate the denominator:
9 × 90 × 7,200 = 5,832,000
Therefore:
k = 288,000 / 5,832,000 ≈ 0.0493 W/mK
This converts approximately to 4.93 × 10-2 W/mK.
Therefore, the correct answer is 4.9 × 10-2 W/mK.
Question 4 Report
Calculate the power of an object which moves through a distance of 500cm in 1s on a frictionless surface by a horizontal force of 50N
Answer Details
To calculate the power of an object, we need to use the formula for power in terms of work done over time. The formula is:
Power (P) = Work Done (W) / Time (t)
First, let's find the work done on the object. Work done can be calculated using the formula:
Work Done (W) = Force (F) × Distance (d)
Given:
Substituting the values into the formula for work done, we get:
Work Done (W) = 50 N × 5 m = 250 Joules
Next, we consider the time it took for the object to move this distance:
Now, substituting the work done and time into the power formula:
Power (P) = 250 Joules / 1 s = 250 Watts
Thus, the power of the object is 250 Watts.
Question 5 Report
The defect of the eye lens which occurs when the ciliary muscles are weak is
Answer Details
The defect of the eye lens that occurs when the ciliary muscles are weak is known as Presbyopia.
Here's a simple explanation:
The ciliary muscles in the eye are responsible for helping the lens to change shape so that you can focus on objects at different distances. As people age, the ciliary muscles may become weaker. This weakness hampers their ability to properly adjust the lens. As a result, the lens cannot accommodate or focus as effectively, especially when looking at nearby objects. This leads to a difficulty in seeing objects up close clearly, which is known as presbyopia.
Presbyopia is a natural condition associated with aging, and it typically becomes noticeable in people in their 40s or 50s. This is different from other eye conditions like:
So in summary, presbyopia is the condition that results from weakened ciliary muscles, affecting near vision as a person ages.
Question 6 Report
The average translational kinetic energy of gas molecules depends on
Answer Details
The average translational kinetic energy of gas molecules is directly related to the temperature of the gas. This relationship is based on the principles of kinetic molecular theory, which explains the behavior of gas molecules in terms of their motion.
Let's break this down simply:
1. Temperature and Kinetic Energy:
The average translational kinetic energy of gas molecules is given by the equation:
\( KE_{avg} = \frac{3}{2} k_B T \)
where \( KE_{avg} \) is the average translational kinetic energy, \( k_B \) is the Boltzmann constant, and \( T \) is the absolute temperature in Kelvin. This formula shows that the kinetic energy is directly proportional to the temperature.
2. What This Means:
As the temperature of a gas increases, the molecules move faster, which increases their translational kinetic energy. Conversely, as the temperature decreases, the molecules slow down, resulting in lower kinetic energy.
It is important to note that this relation is independent of the pressure and the number of moles of the gas. While pressure and the number of moles do affect the overall behavior of a gas, they do not directly influence the average translational kinetic energy of individual molecules.
Therefore, the correct explanation is that the average translational kinetic energy of gas molecules depends on temperature only.
Question 7 Report
A load of 300N is to be lifted by a machine with a velocity ratio of 2 and an efficiency of 60%. What effort will be applied to lift the load?
Answer Details
To determine the effort needed to lift a load using a machine, we first need to understand some key concepts: **Load**, **Effort**, **Velocity Ratio** (VR), and **Efficiency**.
1. **Load** is the force or weight that needs to be lifted by the machine. In this case, the load is 300N.
2. **Velocity Ratio (VR)** is the ratio of the distance moved by the effort to the distance moved by the load. Given here as 2.
3. **Efficiency** of a machine is expressed as a percentage and is the ratio of the useful work output to the input work done by the effort. Here, the efficiency is 60% or 0.60 as a decimal.
The formula to calculate the **Effort** is derived from the relationship between these factors:
\[ \text{Efficiency} = \frac{\text{Mechanical Advantage (MA)}}{\text{Velocity Ratio (VR)}} \]
Where:
\[ \text{Mechanical Advantage (MA)} = \frac{\text{Load}}{\text{Effort}} \]
From the above, we have:
\[ \text{MA} = \text{VR} \times \text{Efficiency} \]
Replacing with the given values:
\[ MA = 2 \times 0.60 = 1.2 \]
Now, calculate the **Effort** using the relation:
\[ \text{Effort} = \frac{\text{Load}}{\text{MA}} \]
\[ \text{Effort} = \frac{300N}{1.2} = 250N \]
Therefore, the **Effort** needed to lift the load is 250N.
Question 8 Report
Find the amount of current required to deposit 0.02kg of metal in a given electrolysis for 120 seconds. [electro chemical equivalent of the metal = 1.3 x 10−7 kgC−1 ]
Answer Details
To determine the amount of current required, we need to use Faraday's laws of electrolysis. The first law states that the mass of the substance deposited at an electrode is directly proportional to the quantity of electricity (or charge) that passes through the electrolyte.
Here, we have:
According to Faraday's first law of electrolysis, the mass (\( m \)) can be calculated by the formula:
m = z \times I \times t
Where:
Rearranging the formula to solve for current \( I \):
I = \(\frac{m}{z \times t}\)
Substituting the given values into the formula:
I = \(\frac{0.02 \, \text{kg}}{1.3 \times 10^{-7} \, \text{kg/C} \times 120 \, \text{s}}\)
Calculating the denominator:
I = \(\frac{0.02}{1.56 \times 10^{-5}}\)
Solving for \( I \):
I = 1282.05 \, \text{A}
Thus, the appropriate amount of current required to deposit 0.02 kg of metal in 120 seconds is approximately 1.3 x 103 A.
Question 9 Report
If the velocity ratio of a machine is 4, what does it mean?
Answer Details
The velocity ratio of a machine is a concept used to explain how much the machine is expected to amplify the input motion. If the velocity ratio of a machine is 4, it means that the distance moved by the effort is 4 times greater than the distance moved by the load.
To understand this concept better, consider what a machine does: it allows you to apply a small effort over a longer distance to move a heavy load over a shorter distance. In this scenario, if the velocity ratio is 4, then for every 4 meters (or units of distance) you exert effort, the load will move 1 meter (or unit of distance).
Question 10 Report
A hydrometer of mass y kg and volume 2y x 10−5 m3 floats in a fluid with 20% of its volume above the fluid, what is the density of the fluid?
Answer Details
To find the density of the fluid, we need to apply the principle of floatation, which states that the weight of the fluid displaced by the submerged part of the object is equal to the weight of the object. Let's walk through the steps:
Step 1: Understand the volume submerged
The hydrometer has a total volume of 2y x 10-5 m3. It floats with 20% of its volume above the fluid. Hence, 80% of its volume is submerged in the fluid.
Submerged Volume, Vsub = (0.80) x (2y x 10-5 m3) = 1.6y x 10-5 m3
Step 2: Apply the principle of floatation
The weight of the fluid displaced equals the weight of the hydrometer.
Weight of hydrometer = Mass x Gravity = y kg x g (where g is the acceleration due to gravity). For the purpose of calculations, g can be considered as 9.81 m/s2.
Weight of displaced fluid = Density of fluid (ρfluid) x Submerged Volume x g
According to the principle of floatation:
y x g = ρfluid x 1.6y x 10-5 m3 x g
g is common on both sides and can be canceled out:
y = ρfluid x 1.6y x 10-5
Step 3: Solving for the density of the fluid
ρfluid = y / (1.6y x 10-5)
The y on both numerator and denominator cancels out:
ρfluid = 1 / (1.6 x 10-5)
ρfluid = 6.25 x 104 kg/m3
Thus, the density of the fluid is 6.25 x 104 kg/m3.
Question 11 Report
Which of the following structures enables the exchange of gases in insects?
Answer Details
In insects, the structure responsible for the exchange of gases is the tracheae. Insects have a unique respiratory system where air is taken in through tiny openings called spiracles located on the surface of their body.
The air then travels directly into a network of tubes known as the tracheae. The tracheae branch out extensively throughout the insect's body, allowing oxygen to diffuse directly to the insect's tissues and cells. The carbon dioxide produced in the cells travels back through the tracheae and exits the body through the spiracles.
Other structures like the skin, Malpighian tubules, and flame cells have different functions:
Thus, the correct answer is the tracheae as they specifically enable the exchange of gases in insects.
Question 12 Report
What is the inductance reactance of a coil of 7H when connected to a 50Hz a.c circuit?
Answer Details
To determine the inductive reactance of a coil, we use the formula:
Inductive Reactance (XL) = 2πfL
Where:
Given:
Substituting the given values into the formula:
XL = 2 × π × 50 × 7
Calculating this:
XL = 2 × 3.14159 × 50 × 7
XL ≈ 2 × 3.14159 × 350
XL ≈ 2 × 1099.557
XL ≈ 2199.114
Therefore, the inductive reactance of the coil is approximately 2200Ω.
Question 13 Report
One main feature of trees in the savanna habitat is the possession of
Answer Details
The main feature of trees in the savanna habitat is the possession of thick, corky bark. The savanna is characterized by a distinct wet and dry season. During the dry season, fires are common as dry grasses and leaves become highly flammable. To adapt to this environmental condition, many trees in the savanna have developed a thick, corky bark which helps protect them against these frequent fires. This bark acts as an insulator, shielding the vital inner tissues of the tree from the heat of the flames. Additionally, this adaptation helps the trees retain moisture, which is crucial during the arid months when water is scarce.
Question 14 Report
An ideal transformer has
Answer Details
An ideal transformer is a hypothetical concept used in electrical engineering to simplify the analysis of real transformers. In an ideal transformer, several assumptions are made to avoid losses and inefficiencies. Here's what an ideal transformer has:
No flux leakage: In an ideal transformer, it is assumed that all the magnetic flux generated in the primary coil is perfectly linked with the secondary coil. This means there is no flux leakage. This assumption ensures maximum efficiency, as all the energy is transferred from the primary to the secondary coil without losses.
Let's briefly discuss the other concepts to understand why they don't pertain to an ideal transformer:
Maximum primary resistance: In an ideal transformer, the resistance of the windings is assumed to be zero. If the primary has maximum resistance, it would result in power loss due to the resistance, contradicting the idea of an ideal transformer.
Hysteresis: This refers to the energy loss that happens in the core material due to the cyclic magnetization and demagnetization processes. An ideal transformer assumes there is no hysteresis loss, meaning the core material does not absorb any energy during these cycles.
Eddy current: These are loops of electric current induced within conductors by a changing magnetic field, which can cause significant energy loss. In an ideal transformer, it is assumed that there are no eddy currents, hence no energy loss due to this effect.
In summary, an ideal transformer is characterized by having no flux leakage, and it assumes that there are no losses due to resistance, hysteresis, or eddy currents. This makes the ideal transformer a perfect, lossless device for the purposes of theoretical analysis.
Question 15 Report
The food nutrient with the highest energy value is
Answer Details
Fat is the food nutrient with the highest energy value, providing 9 calories per gram, while carbohydrates and proteins provide 4 calories per gram.
Fat is the body's most concentrated source of energy, providing more than twice as much potential energy as carbohydrates or proteins.However, carbohydrates burn fastest in metabolism. Fats are a type of lipid. Lipids are a group of organic compounds that are insoluble in water but soluble in organic solvents. Fats are solid at room temperature, while oils are liquid at room temperature.
Therefore, the correct answer is option C.
Question 16 Report
Calculate the value of electric field intensity due to a charge of 4μC if the force due to the charge is 8N
Answer Details
To calculate the electric field intensity due to a charge, we need to use the formula:
Electric Field Intensity (E) = Force (F) / Charge (q)
In this problem, we are given that the force (F) is 8 Newtons (N) and the charge (q) is 4 microcoulombs (μC). First, we need to convert the charge from microcoulombs to coulombs:
1 microcoulomb (μC) = 1 x 10-6 coulombs (C)
Therefore, 4 μC = 4 x 10-6 C.
Now we can use the formula to find the electric field intensity:
E = F / q
E = 8 N / (4 x 10-6 C)
E = 8 / 4 x 106
E = 2 x 106
Thus, the value of the electric field intensity is 2 x 106 N/C.
Question 17 Report
How much joules of heat are given out when a piece of iron, of mass 60g and specific heat capacity 460JKg−1 K−1 , cools from 75ºC to 35ºC
Answer Details
To find out how much heat is given out when the piece of iron cools down, we can use the formula for heat transfer:
Q = mcΔT
Where:
First, let's list the values given and convert the mass from grams to kilograms:
Now, calculate the change in temperature:
ΔT = final temperature - initial temperature = 35ºC - 75ºC = -40ºC
Note: Since we are calculating the heat given out as the iron cools, the temperature change will be negative, which will make Q positive, indicating heat is released.
Substitute these values into the heat transfer formula:
Q = mcΔT = (0.06 kg) x (460 J/Kg·K) x (-40ºC)
Q = 0.06 x 460 x -40
Q = -1104 Joules
Since the question asks for how much heat is given out, we consider the positive value of Q, which is 1104J. Therefore, 1104J of heat is given out when the piece of iron cools from 75ºC to 35ºC.
Question 18 Report
Two points on a velocity-time graph have coordinates (2s, 5m/s) and (4s, 15m/s). Calculate the mean acceleration
Answer Details
The mean acceleration of an object is determined by the change in velocity over the change in time. This is given by the formula:
Mean Acceleration (a) = (Final Velocity - Initial Velocity) / (Final Time - Initial Time)
From the velocity-time graph, we have the following points:
Initial Point: (2s, 5m/s)
Final Point: (4s, 15m/s)
Here, the Initial Velocity is 5m/s, the Final Velocity is 15m/s, the Initial Time is 2s, and the Final Time is 4s.
Plug these values into the formula:
Mean Acceleration (a) = (15m/s - 5m/s) / (4s - 2s)
Simplifying this, we get:
Mean Acceleration (a) = 10m/s / 2s = 5m/s²
The mean acceleration is therefore 5.0 m/s².
Question 19 Report
When thermal energy in a solid is increased, the change in state is called
Answer Details
When the thermal energy in a solid is increased, the solid particles gain energy and begin to vibrate more vigorously. As the temperature rises, these particles eventually have enough energy to overcome the forces holding them in their fixed positions. This leads to a change of state from a solid to a liquid. This process is known as melting.
To further understand this, imagine an ice cube. As it absorbs heat, it gains energy, and the ice (which is a solid) starts to turn into water (which is a liquid). This transition is what we refer to as melting.
Thus, the term that describes this change of state, when a solid is heated and turns into a liquid, is melting.
Question 20 Report
Bilateral symmetry,cylindrical bodies and double openings are characteristic features of
Answer Details
Bilateral symmetry, cylindrical bodies, and double openings are characteristic features of nematodes. Nematodes, also known as roundworms, have a body structure that is symmetric along a single plane, which results in two mirror-image halves, thus exhibiting bilateral symmetry.
Furthermore, they usually have a cylindrical body shape, which means their bodies are long and narrow like a cylinder and taper at both ends. This shape helps them move through their environment easily. Additionally, nematodes have a complete digestive system with two openings: a mouth and an anus. This means that food enters through the mouth, gets digested, and waste exits through the anus.
In contrast, organisms like hydra, protozoa, and protists possess different anatomical features. Hydras, for example, typically show radial symmetry, and protozoa and protists generally do not have a well-defined body shape or bilateral symmetry as seen in nematodes. Therefore, the description fits nematodes best.
Question 21 Report
A red shirt under a red light appears pale because red
Answer Details
To understand why a red shirt appears pale under red light, we need to consider how colors are perceived. A shirt's color is due to the light it reflects. A red shirt reflects red light and absorbs other colors. This is why it looks red under normal white light, which is made up of many colors including red.
When you place a red shirt under red light, the only available light to reflect is red. Since the shirt is already designed to reflect red light, it reflects the red light and appears its vivid color. However, it might appear brighter or paler since no other colors are present to contrast against the red.
Therefore, the best explanation is that the red shirt absorbs other colours and reflects red.
Question 22 Report
The process of adding impurities to a semiconductor material to increase its conductivity is
Answer Details
The process you are referring to is called doping. In simple terms, doping is the method of intentionally introducing impurities into an extremely pure semiconductor to change its electrical properties, which increases its conductivity.
Semiconductors, like silicon or germanium, are materials that have electrical conductivity between conductors (like metals) and insulators (like glass). By adding impurities, we can control and enhance their ability to conduct electricity. These impurities are atoms of other elements that either have more or fewer electrons in their outer energy levels compared to those in the semiconductor.
When you add impurities with more electrons, it creates an n-type semiconductor because of the extra *negative* charge carriers (electrons). Conversely, adding impurities with fewer electrons makes a p-type semiconductor, as it creates 'holes' which act as positive charge carriers.
This process of doping is essential for creating various semiconductor devices, like diodes, transistors, and integrated circuits, which are foundational components in all electronic devices. Hence, doping plays a crucial role in the functionality and efficiency of electronic systems.
Question 23 Report
Bifocal lens is used to correct the eye defect of
Answer Details
Bifocal lenses are primarily used to correct the eye defect known as presbyopia. As people age, the lens of the eye naturally loses its flexibility, making it difficult to focus on objects that are close up. This condition is known as presbyopia. A bifocal lens is designed with two different optical powers to accommodate this need. The upper part of the lens is usually crafted for distance vision, while the lower segment is designed for near vision tasks, such as reading.
Astigmatism is a different eye condition caused by irregular curvature of the cornea or lens, resulting in blurred or distorted vision at all distances. This condition is typically corrected with cylindrical lenses rather than bifocals.
Hypermetropia, commonly known as farsightedness, is a condition where distant objects can be seen more clearly than near ones. Simple convex lenses are usually used for this correction.
Myopia, or nearsightedness, is a condition where nearby objects are seen clearly, while distant objects appear blurry. Concave lenses are generally used to correct this condition.
In summary, bifocal lenses are specifically designed to address the challenges of focusing at different distances simultaneously, making them ideal for managing presbyopia.
Question 24 Report
In voltage measurement, the potentiometer is preferred to voltmeter because it
Answer Details
In voltage measurement, a **potentiometer is preferred to a voltmeter** primarily because it **consumes negligible current**. Let me explain this in simpler terms:
A **voltmeter** is an instrument used to measure the potential difference (voltage) across two points in an electrical circuit. However, when a voltmeter is connected, it draws a small amount of current from the circuit to make the measurement, which can slightly alter the voltage being measured. This is particularly an issue in high-resistance circuits where even a small current draw can significantly affect the measurement.
On the other hand, a **potentiometer** is a device designed to measure voltage by comparing it with a known reference voltage without drawing current from the circuit under test. It comes into balance at a point where no current flows through it, ensuring that the measurement is not influenced by the potentiometer itself. This makes it a non-invasive method of measuring voltage, which is particularly useful for precise measurements in sensitive circuits.
Here’s a brief explanation about why the other options listed are less relevant:
Therefore, the key advantage of the potentiometer is its **ability to measure voltage without altering the circuit**, which stems from its negligible current consumption. This **ensures more accurate and reliable measurements** in many applications.
Question 25 Report
Pilots uses aneroid barometer to know the height above sea level because
Answer Details
Aneroid barometers are compact and lightweight, making them suitable for use in aircraft where space and weight are critical considerations. They provide a reliable measurement of altitude based on changes in atmospheric pressure.
Question 26 Report
A wheelbarrow inclined at 60º to the horizontal is pushed with a force of 150N. What is the horizontal component of the applied force
Answer Details
When you push a wheelbarrow inclined at an angle to the horizontal, the applied force can be divided into two components: a **horizontal component** and a **vertical component**. To find the horizontal component of the force, you need to use the concept of resolving vectors.
The force of 150N is acting at an angle of 60º to the horizontal. The horizontal component of this force can be calculated using the cosine of the angle. The formula to determine the horizontal component \( F_{\text{horizontal}} \) is given by:
Fhorizontal = Fapplied \times \cos(\theta)
Where:
Substitute the values into the formula:
Fhorizontal = 150N \times \cos(60º)
We know that \(\cos(60º)\) equals 0.5.
Therefore:
Fhorizontal = 150N \times 0.5 = 75N
Thus, the **horizontal component** of the applied force is 75N.
Question 27 Report
The equivalent capacitance of the capacitors in the circuit above
Answer Details
apacitance in parallel = one at the top + one under = 2C
The two in the middle are in series = C2
The equivalent capacitance of the capacitors in the circuit above = C2 + 2C = 52 C
Question 28 Report
Calculate the upthrust on a spherical ball of volume 4.2 x 10−4 m3 when totally immersed in a liquid of density 1028kgm−3
Answer Details
Upthrust(Force) = volume of object x density of liquid x g = V x ρ x g
U = 4.2 x 10−4 x 1028 x 10 ≊ 4.3N
Question 29 Report
I It wets glass
II It needs to be coloured
III It has a low density
Water is not suitable for use as a thermometric liquid because
Answer Details
Water is not suitable for use as a thermometric liquid because:
a) It wets glass: This can cause issues with reading the level of the liquid.
b) It needs to be coloured: Water is typically clear, making it difficult to see the level without coloring.
c) It has a low density: This can affect the sensitivity and accuracy of the thermometer.
Question 30 Report
What is the colour of red rose under a blue light?
Answer Details
To understand the color of a red rose under a blue light, we need to consider how we perceive color. Objects appear colored because they reflect certain wavelengths of light. A red rose appears red in white light because it reflects red wavelengths and absorbs others.
When you shine blue light on a red rose, the situation changes. A blue light primarily contains blue wavelengths. Since the red rose does not have red wavelengths to reflect anymore, and it cannot reflect blue light (as it absorbs it), the rose will appear to be the absence of any reflected wavelength visible to our eyes.
This means the rose will appear black under blue light, as black is perceived when no visible light is reflected into our eyes. Thus, the color of the red rose under a blue light is black.
Question 31 Report
According to kinetic theory of gases, the pressure exerted by the gas on the wall is equal
Answer Details
According to the kinetic theory of gases, the pressure exerted by a gas on the walls of its container relates to the behavior and movement of its molecules. To understand how this pressure forms, let's explore the following essential concepts.
Molecules in a gas move rapidly and randomly in all directions. When these molecules collide with the walls of their container, they exert force due to the change in momentum during these collisions. The frequency and force of these collisions contribute directly to the pressure experienced by the container walls.
The **pressure** exerted by the gas can be described in terms of the rate of change of momentum imparted by the walls per second per unit area. This means that pressure is determined by considering how fast and how much the momentum of the gas molecules changes when they bounce off the container's walls, spread over a specific area and over time. In simpler terms, the faster and more frequently molecules hit the walls, and the higher their change in momentum, the greater the pressure is.
This explanation can be directly associated with the statement: "rate of change of momentum imparted by the walls per second per unit area", which accurately describes the concept of pressure in the context of the kinetic theory of gases.
Question 32 Report
Calculate the depth of a swimming pool if the apparent depth is 10cm. ( Refractive index of water = 1.33 )
Answer Details
To calculate the real depth of a swimming pool given the apparent depth, we can use the concept of refraction of light. When light passes from one medium to a denser medium, it bends towards the normal. This bending effect causes objects submerged in water to appear closer to the surface than they actually are. The formula to relate these depths is given by:
Real Depth = Apparent Depth × Refractive Index
Given the problem:
Using the formula:
Real Depth = 10 cm × 1.33
Calculating the above:
Therefore, the depth of the swimming pool is 13.3cm.
Question 33 Report
Use the diagram above to answer the question that follows
The zone labelled II is called
Answer Details
The zone labelled II is called the littoral zone.
To explain: The littoral zone is a part of a body of water that is close to the shore. It is typically characterized by abundant sunlight and nutrient availability, making it a highly productive area for aquatic plants and animals. This zone supports various forms of life such as algae, small fish, and invertebrates. The key feature of the littoral zone is its proximity to the shoreline, where sunlight can penetrate to the bottom, allowing for photosynthesis to occur.
Question 34 Report
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called
Answer Details
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called the friction force.
Let me explain each of the options to clarify why friction force is the correct answer:
In summary, friction force is the force that acts to oppose sliding between surfaces in contact and acts tangentially, making it the correct answer.
Question 35 Report
An example of a non-rechargeable cell is
Answer Details
A non-rechargeable cell, commonly known as a primary cell, is a type of chemical battery that is designed to be used once until the chemical reactions that produce electricity are exhausted. After this point, the cell cannot be reversed or recharged.
In the given examples, the dry leclanche cell is a well-known example of a non-rechargeable cell. It is commonly used in everyday devices like remote controls, wall clocks, and torches. This cell type utilizes zinc and manganese dioxide as electrodes and relies on a moist paste of ammonium chloride for the electrolyte.
The other examples, such as nickel iron, mercury cadmium, and lead-acid, involve rechargeable cells (secondary cells) that are specifically designed to endure multiple charges and discharges throughout their useful life. Thus, unlike the dry leclanche cell, these can be recharged after use.
Therefore, the dry leclanche cell is an ideal example of a non-rechargeable cell because it can only be used once. After depletion, it cannot be recharged or reused.
Question 36 Report
A monochromatic light is one that
Answer Details
A monochromatic light is one that has a single wavelength or color. This means that it consists of light waves that all have the same frequency, resulting in a uniform appearance without any variation.
Question 37 Report
The device for measuring the angle of dip is
Answer Details
The device used for measuring the angle of dip is the dip circle.
Let me explain this in simple terms:
The angle of dip, also known as the magnetic inclination, is the angle made by the Earth's magnetic field lines with the horizontal plane. It varies depending on where you are on the Earth's surface. In some places, magnetic field lines are nearly vertical, while in others they are more horizontal.
A dip circle is a specialized scientific instrument used to measure this angle. It usually consists of a magnetic needle that is free to rotate in the vertical plane.
When using a dip circle, you align it so that its plane is parallel to the direction of the Earth's magnetic field. Then, you read the angle at which the magnetic needle stabilizes. This is the angle of dip. The instrument's mechanism allows for accurate measurement of this angle by compensating for any external influences or inclinations.
Question 38 Report
The velocity ratio of an inclined plane at 60º to the horizontal is
Answer Details
The concept of an inclined plane is all about simplifying the forces involved in moving or holding a load. The **velocity ratio (VR)** for an inclined plane is defined as the ratio of the distance moved by the effort to the distance moved by the load. This can also be expressed in terms of the lengths involved in the triangle made by the inclined plane.
For an inclined plane placed at an angle **θ** to the horizontal, the velocity ratio is given by the formula:
VR = 1/sin(θ)
Given that the inclined plane is at an angle of **60º**:
First, find the sine of 60º:
sin(60º) = √3/2 (approximately 0.866)
Now, substitute this value into the formula for VR:
VR = 1/sin(60º) ≈ 1/0.866 ≈ 1.155
The **velocity ratio** for an inclined plane at **60º** to the horizontal is **approximately 1.155**.
Question 39 Report
An electron falls from an energy level of -5.44eV to another energy level, E. If the emitted photon is of wavelength 5.68 x 10−6 m, calculate the energy change. [ Plank's constant = 6.63 x 10−34 Js, emitted radiation speed = 3.0 x 108 ms−1 ]
Answer Details
To find the energy change when an electron falls from one energy level to another, we need to calculate the energy of the emitted photon. This energy can be found using the formula:
E = hν or E = hc/λ
where:
Substitute these values into the equation:
E = (6.63 x 10-34 Js) * (3.0 x 108 ms-1) / (5.68 x 10-6 m)
First, calculate the numerator:
(6.63 x 10-34) * (3.0 x 108) = 1.989 x 10-25 J·m
Then, divide by the wavelength:
E = 1.989 x 10-25 J·m / 5.68 x 10-6 m = 3.5 x 10-20 J
Therefore, the energy change when the electron falls is approximately 3.5 x 10-20 J.
Checking the options provided, the closest value is 3.49 x 10-20 J.
Question 40 Report
The part of the inner ear that is responsible for hearing is
Answer Details
The part of the inner ear that is responsible for hearing is the cochlea.
The inner ear is a complex structure, and each of its components serves different functions. Let me break it down further:
Thus, the cochlea is the crucial component of the inner ear responsible for converting sound vibrations into nerve signals, making it central to the process of hearing.
Would you like to proceed with this action?