Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
A beam of light traveling in water is incident on a glass which is immersed in the water. The incident beam makes an angle of 40o
with the normal. Calculate the angle of refraction in the glass.
[Refractive index of water = 1.33, Refractive index of glass = 1.5]
Question 2 Report
The electrolyte used in the Nickel-Iron (NiFe) accumulator is
Answer Details
The electrolyte used in the Nickel-Iron (NiFe) accumulator is **potassium hydroxide solution**.
In a Nickel-Iron accumulator, the electrolyte is the substance that allows the flow of electric current between the electrodes. It is essential for the proper functioning of the accumulator.
Potassium hydroxide solution is the ideal electrolyte for the NiFe accumulator due to its properties. It has good electrical conductivity, which means it allows the movement of ions between the positive and negative electrodes, enabling the flow of electrons and facilitating the charging and discharging process.
In addition to good conductivity, potassium hydroxide solution also has other beneficial properties for the NiFe accumulator. It is stable, ensuring a longer lifespan for the accumulator. It is also less prone to self-discharge, meaning the accumulator can retain its charge for a longer period without significant loss.
Therefore, the electrolyte used in the Nickel-Iron (NiFe) accumulator is potassium hydroxide solution.
Question 3 Report
Which of the following statements regarding the application of electrical conduction via gases is/are correct?
Electrical conduction in gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Photocells
(iv) Cathode ray oscilloscope/T.V. tubes
Answer Details
Electrical conduction of gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Advertising industry/Neon signs
(iv) Cathode ray oscilloscope/T.V. tubes
Question 4 Report
Name the type of equilibrium for each position of the ball
Answer Details
To determine the type of equilibrium for each position of the ball, we need to understand what each type of equilibrium means. 1. **Unstable equilibrium**: This occurs when a small disturbance or change in the system causes the object to move away from its equilibrium position. In other words, the system is "unstable" and will not return to its original position on its own. 2. **Neutral equilibrium**: This occurs when a small disturbance or change in the system does not cause the object to move away from its equilibrium position. The system remains in its new position without any tendency to return to its original position. 3. **Stable equilibrium**: This occurs when a small disturbance or change in the system causes the object to move away from its equilibrium position, but the system has a tendency to return to its original position on its own. Now, let's analyze each position of the ball: A - **Unstable equilibrium**: Suppose the ball is placed at position A. If the ball is slightly disturbed or moved from this position, it will roll away further from its original position and won't come back on its own. Hence, position A is an unstable equilibrium. B - **Stable equilibrium**: Suppose the ball is placed at position B. If the ball is slightly disturbed or moved from this position, it will oscillate back and forth but eventually come back to its original position. This indicates that position B is a stable equilibrium. C - **Neutral equilibrium**: Suppose the ball is placed at position C. If the ball is slightly disturbed or moved from this position, it will stay at the new position without any tendency to return to its original position. This identifies position C as a neutral equilibrium. Based on the explanations above, the correct answer is: A - unstable, B - stable, C - neutral.
Question 5 Report
On a particular hot day, the temperature is 40°C and the partial pressure of water vapor in the air is 38.8 mmHg. What is the relative humidity?
Answer Details
To calculate the relative humidity, we need to understand the concept of saturation and how much water vapor the air can hold at a given temperature.
Saturation is the point at which the air is holding the maximum amount of water vapor it can hold at a particular temperature. Once the air reaches saturation, any additional moisture will start to condense into liquid water.
The amount of water vapor that the air can hold increases with temperature. Warmer air can hold more water vapor, while cooler air can hold less.
Now, let's calculate the relative humidity using the given information:
1. Find the saturation vapor pressure at 40°C: - The saturation vapor pressure is the maximum amount of water vapor the air can hold at a specific temperature. - At 40°C, the saturation vapor pressure is approximately 55.3 mmHg.
2. Calculate the relative humidity: - Relative humidity is the ratio of the current partial pressure of water vapor to the saturation vapor pressure, expressed as a percentage. - Relative Humidity = (Partial pressure of water vapor / Saturation vapor pressure) * 100 - In this case, the partial pressure of water vapor is 38.8 mmHg and the saturation vapor pressure at 40°C is 55.3 mmHg. - Plugging in these values into the formula, we get: Relative Humidity = (38.8 mmHg / 55.3 mmHg) * 100 = 70.2%
Therefore, the relative humidity on this particular hot day is approximately 70%.
Answer: The correct option is 70.
Question 6 Report
The pitch of a musical note is determined by the frequency of the sound wave that it produces. If two instruments have the same frequency, which of the following factors will most affect the difference in their pitches?
Answer Details
The frequency of a sound wave is proportional to the tension of the string. If two instruments have the same frequency, but one has a tighter string, then the instrument with the tighter string will have a higher pitch.
The other factors listed, such as the size of the instrument, the material of the instrument, and the shape of the instrument, will also affect the pitch of the instrument, but they will have a smaller effect than the tension of the string.
Question 7 Report
A missile is launched with a speed of 75 ms-1 at an angle of 22° above the surface of a warship. Find the horizontal range achieved by the missile. Ignore the effects of air resistance.
[Take g = 10 ms-1]
Question 8 Report
Question 9 Report
Which of the following is/are not true about the heat capacity of a substance?
(i) It is an intensive property
(ii) Its S.I unit is jK−1
(iii) It is an extensive property
(iv) Its S.I unit is jkg−1
Answer Details
The correct answer is (ii) and (iii) only. The heat capacity of a substance is a measure of how much heat energy is required to raise the temperature of the substance by a certain amount. It is an important property in thermodynamics. (i) It is not true that heat capacity is an intensive property. Intensive properties do not depend on the size or amount of the substance. For example, density and temperature are intensive properties. However, heat capacity does depend on the size or amount of the substance. The heat capacity of a substance increases with its mass or amount. Therefore, statement (i) is false. (ii) It is true that the SI unit of heat capacity is joules per kelvin (J/K). Heat capacity is defined as the amount of heat energy (in joules) required to raise the temperature of a substance by 1 degree kelvin. Therefore, statement (ii) is true. (iii) It is not true that heat capacity is an extensive property. Extensive properties depend on the size or amount of the substance. Examples of extensive properties include mass and volume. However, heat capacity is an intensive property as explained earlier. Therefore, statement (iii) is false. (iv) It is true that the SI unit of heat capacity is joules per kilogram per kelvin (J/(kg·K)). This unit is commonly used for specific heat capacity, which is the heat capacity per unit mass. Therefore, statement (iv) is true. In summary, the correct statement is that (ii) and (iii) are not true about the heat capacity of a substance.
Question 10 Report
Which of the following is an example of a couple?
Answer Details
A couple is a pair of forces that are equal in magnitude but opposite in direction, and that are applied to a body at different points. The forces of a couple do not produce any translation, but they do produce a rotation.
Question 11 Report
How much net work is required to accelerate a 1200 kg car from 10 ms-1 to 15 ms-1
Answer Details
Question 12 Report
Calculate the absolute pressure at the bottom of a lake at a depth of 32.8 m. Assume the density of the water is 1 x 10-3 kgm-3 and the air above is at a pressure of 101.3 kPa.
[Take g = 9.8 ms-2]
Question 13 Report
An open-tube mercury manometer is used to measure the pressure in a gas tank. When the atmospheric pressure is 101,325 Pa
, what is the absolute pressure in Pa
in the tank if the height of the mercury in the open tube is 25 cm higher
Question 14 Report
A parallel plate capacitor separated by an air gap is made of 0.8m2 tin plates and 20 mm apart. It is connected to 120 V battery. What is the charge on each plate?
Take εo = 8.85 * 10-12 Fm−1
Answer Details
To calculate the charge on each plate of a parallel plate capacitor, we can use the formula Q = CV, where Q is the charge, C is the capacitance, and V is the voltage applied. The capacitance of a parallel plate capacitor can be calculated using the formula C = εA/d, where C is the capacitance, ε is the permittivity of the medium (in this case, air), A is the area of each plate, and d is the distance between the plates. Given: Area of each plate (A) = 0.8 m^2 Distance between the plates (d) = 20 mm = 0.02 m Permittivity of air (ε) = 8.85 x 10^-12 F/m Using the formula for capacitance, we can calculate C: C = εA/d = (8.85 x 10^-12 F/m)(0.8 m^2)/(0.02 m) = 8.85 x 10^-12 F/m * 40 F = 3.54 x 10^-10 F Now, we can use the formula Q = CV to calculate the charge on each plate: Q = (3.54 x 10^-10 F)(120 V) = 4.25 x 10^-8 C = 42.5 x 10^-9 C = 42.5 nC Therefore, the charge on each plate of the parallel plate capacitor is **42.5 nC**.
Question 15 Report
From the diagram above, if the potential difference across the resistor, capacitor and inductor are 60V, 120V and 30V respectively, the effective potential difference is
Answer Details
Question 16 Report
The near point of a patient's eye is 50.0 cm. What power (in diopters) must a corrective lens have to enable the eye to see clearly an object 25.0 cm away?
Question 17 Report
The number of holes in an intrinsic semiconductor
Answer Details
The number of holes in an intrinsic semiconductor is equal to the number of free electrons.
In an intrinsic semiconductor, the valence band is completely filled with electrons. However, due to thermal energy, some of these electrons can gain enough energy to jump to the conduction band, leaving behind holes in the valence band.
For every electron that moves to the conduction band, a hole is created in the valence band. Since the number of electrons and holes is equal, the number of holes in an intrinsic semiconductor is equal to the number of free electrons.
Therefore, the correct option is: is equal to the number of free electrons.
Question 18 Report
Which of the following types of electromagnetic waves is used in night vision goggles?
Answer Details
Night vision goggles use infrared waves to enable the user to see in the dark.
Infrared waves are a type of electromagnetic radiation that have longer wavelengths than visible light. They fall between the visible and microwave regions on the electromagnetic spectrum. Unlike visible light, which is visible to the human eye, infrared waves cannot be seen without the use of specialized devices such as night vision goggles.
When it is dark, objects do not emit visible light that can be detected by the human eye. However, they do emit heat in the form of infrared radiation. Night vision goggles work by detecting and amplifying this infrared radiation, which is then converted into visible light that can be seen by the user.
The goggles contain an image intensifier tube that is sensitive to infrared radiation. This tube amplifies the incoming infrared light and converts it into an image that can be seen through the goggles. The resulting image appears green because the human eye is more sensitive to green light.
Therefore, to see in the dark, night vision goggles use infrared waves to detect and amplify the infrared radiation emitted by objects. This enables the user to have enhanced vision in low-light conditions or complete darkness.
Question 19 Report
Find the tension in the two cords shown in the figure above. Neglect the mass of the cords, and assume that the angle is 38° and the mass m is 220 kg
[Take g = 9.8 ms-2]
Answer Details
W = mg = 220 x 9.8 = 2156 N
⇒Sin 38º = 2156T1
⇒ T1 = 2156Sin38
⇒ T1 = 3502 N
Cos 38º = T2T1
⇒ T2 = 3502 x Cos 38º
⇒ T2 = 2760 N
; T1
= 3502 N, T2
= 2760 N.
Question 20 Report
A lorry accelerates uniformly in a straight line with acceleration of 4ms-1 and covers a distance of 250 m in a time interval of 10 s. How far will it travel in the next 10 s?
Answer Details
Question 21 Report
A man swung an object of mass 2 kg in a circular path with a rope 1.2 m long. If the object was swung at 120 rev/min, find the tension in the rope.
Answer Details
To find the tension in the rope, we can first use the formula for centripetal force, which is given by:
F_centripetal = (m * v^2) / r
where: - F_centripetal is the centripetal force - m is the mass of the object - v is the velocity of the object - r is the radius of the circular path
In this case, the mass of the object (m) is given as 2 kg and the radius (r) is given as 1.2 m.
Now, to find the velocity (v), we need to convert the given value of 120 rev/min to m/s.
Here's how we can do that:
1. First, convert the revolutions per minute (rev/min) to revolutions per second (rev/s) by dividing by 60 (since there are 60 seconds in a minute):
120 rev/min = 120/60 rev/s = 2 rev/s
2. Next, we need to convert the revolutions per second to the linear velocity in meters per second (m/s). To do this, we need to find the circumference of the circular path.
The circumference of a circle is given by the formula:
C = 2πr where r is the radius of the circular path.
Substituting the value of the radius (r = 1.2 m) into the formula, we have:
C = 2π * 1.2 = 2.4π Now, to find the linear velocity (v), we can multiply the circumference (C) by the number of revolutions per second (2 rev/s):
v = C * rev/s = 2.4π * 2 = 4.8π m/s
Now that we have the values of m (2 kg) and v (4.8π m/s), we can substitute them into the centripetal force formula to find the tension in the rope:
F_centripetal = (m * v^2) / r = (2 * (4.8π)^2) / 1.2
Simplifying further:
F_centripetal = (2 * 23.04π^2) / 1.2
F_centripetal = 38.4π^2
Finally, to get a numerical value for the tension in the rope, we can approximate the value of π to 3.14 and calculate the centripetal force:
F_centripetal ≈ 38.4 * 3.14^2 ≈ 379 N
Therefore, the tension in the rope is approximately 379 N.
Therefore, the correct answer is 379.
Question 22 Report
An explosion occurs at an altitude of 312 m above the ground. If the air temperature is -10.00°C, how long does it take the sound to reach the ground?
[velocity of sound at 0 deg = 331 ms-1]
Question 23 Report
Which of the following liquids has the highest surface tension?
Answer Details
Surface tension is a property of liquids that arises due to the cohesive forces between the molecules at the surface. It can be thought of as the "skin" or "film" that forms on the surface of a liquid.
Considering the options given:
- Water: Water molecules have strong cohesive forces, allowing them to form hydrogen bonds with each other. As a result, water has relatively high surface tension.
- Mercury: Mercury is a metal with metallic bonding, which is much stronger than the cohesive forces in liquids. As a result, mercury has very high surface tension.
- Oil: Oils typically consist of nonpolar molecules, which have weaker cohesive forces compared to polar molecules like water. Therefore, oil generally has lower surface tension than water.
Based on this information, we can conclude that mercury has the highest surface tension among these liquids.
Question 24 Report
Three forces with magnitudes 16 N, 12 N and 21 N are shown in the diagram below. Determine the magnitude of their resultant force and angle with the x-axis
Answer Details
Question 25 Report
The branch of physics that deals with the motion of objects and the forces acting on them is called:
Answer Details
The branch of physics that deals with the motion of objects and the forces acting on them is called mechanics.
Mechanics is the foundation of physics that studies how objects move and interact under the influence of forces. It encompasses both the study of the motion of macroscopic objects, such as cars and planets, and the behavior of microscopic particles, such as atoms and molecules.
Mechanics is divided into two main branches:
Therefore, when referring to the branch of physics that specifically focuses on the motion of objects and the forces acting on them, the correct answer is mechanics.
Question 26 Report
A positively charged particle is placed near a negatively charged particle. What is the direction of the electric force between the two particles?
Answer Details
The correct answer is The electric force is directed from the positive particle to the negative particle.
When a positively charged particle is placed near a negatively charged particle, they exert an attractive force on each other. This force is called the electric force.
According to Coulomb's Law, the electric force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
In this case, the positively charged particle has a positive charge and the negatively charged particle has a negative charge. Since opposite charges attract each other, the electric force between them is attractive.
Therefore, the electric force is directed from the positive particle to the negative particle.
Question 27 Report
Which of the following is a type of incandescent light source?
Answer Details
The Tungsten filament lamp is a type of incandescent light source.
An incandescent light source works by using electricity to heat a filament inside the bulb until it becomes so hot that it emits light. In a tungsten filament lamp, the filament is made of tungsten, which is a metal that has a very high melting point. This allows the filament to get extremely hot without melting.
When an electric current passes through the filament, it heats up and starts to glow, producing visible light. The light emitted by a tungsten filament lamp is actually a result of the high temperature, which causes the atoms in the filament to vibrate and release energy in the form of light.
Incandescent light sources like tungsten filament lamps have been widely used for many years because they produce a warm, yellowish light that is similar to natural sunlight. However, they are not very energy-efficient, as a significant amount of the electrical energy is converted into heat rather than light.
In recent years, there has been a shift towards more energy-efficient alternatives like LED lamps and fluorescent lamps. LED lamps use a different mechanism to produce light, using a semiconductor that emits light when electric current passes through it. Fluorescent lamps use a gas-filled tube that emits ultraviolet light when electric current flows through it, and this ultraviolet light is then converted into visible light by a phosphor coating inside the tube.
So, in summary, the tungsten filament lamp is the type of incandescent light source among the options given. It works by heating a tungsten filament to a very high temperature, causing it to emit light. However, it is less energy-efficient compared to LED and fluorescent lamps.
Question 28 Report
A 400 N box is being pushed across a level floor at a constant speed by a force P of 100 N at an angle of 30.0° to the horizontal, as shown in the the diagram below. What is the coefficient of kinetic friction between the box and the floor?
Answer Details
W = 400 N; P = 100 N; θ = 30o; μ = ?
Frictional force (Fr) = μR (where R is the normal reaction)
The forces acting along the horizontal direction are Fr and Px
∴ Pcos 30° - Fr = ma (Pcos 30° is acting in the +ve x-axis while Fr in the -ve x-axis)
⇒ 100cos 30° - μR = ma
Since the box is moving at constant speed, its acceleration is zero
⇒ 100cos 30° - μR = 0
⇒ 100cos 30o = μR ----- (i)
The forces acting in the vertical direction are W, Py and R
∴ R - Psin 30° - W = 0 (R is acting upward (+ve) while Py and W are acting downward (-ve) and they are at equilibrium)
⇒ R - 100sin 30° - 400 = 0
⇒ R = 100sin 30° + 400
⇒ R = 50 + 400 = 450 N
From equation (i)
⇒ 100cos 30° = 450μ
⇒μ=100cos30°
N = 100cos30°450
= μ = 0.19
Question 29 Report
A 35 kΩ is connected in series with a resistance of 40 kΩ. What resistance R must be connected in parallel with the combination so that the equivalent resistance is equal to 25 kΩ?
Answer Details
For the combination in series;
⇒R1 = 35kΩ + 40kΩ = 75kΩ
R is combined with 75kΩ in parallel to give 25kΩ
= 1Req
= 1R
+ 1R
= 125
= 1R
+ 175
= 125
- 175
+ 1R
= 3−175
= 1R
= 275
= 1R
= 752
= R
; R = 37.5k Ω
Question 30 Report
A metal sphere is placed on an insulating stand. A negatively charged rod is brought close to it. If the sphere is earthed and the rod is taken away, what will be the charge on the sphere?
Answer Details
When a negatively charged rod is brought close to a metal sphere, the free electrons in the sphere are repelled from the rod and move to the other end of the sphere. This creates a region of positive charge on the side of the sphere closest to the rod, and a region of negative charge on the opposite side. The process of charge distribution stops when the net force on the free electrons inside the metal is equal to zero.
If the sphere is then earthed, the free electrons will flow from the sphere to the ground, leaving the sphere with a net positive charge.
Question 31 Report
How much work is done against the gravitational force on a 3.0 kg object when it is carried from the ground floor to the roof of a building, a vertical climb of 240 m?
Answer Details
To calculate the work done against gravitational force, we can use the formula:
Work = Force x Distance
In this case, the force we are working against is the gravitational force. The gravitational force is the force with which the Earth pulls objects towards its center. The formula for gravitational force is:
Force = Mass x Acceleration due to gravity
The mass of the object is given as 3.0 kg. The acceleration due to gravity on Earth is approximately 9.8 m/s^2.
Now, we need to find the distance the object is being carried, which is 240 m.
Plugging these values into the formulas, we have:
Force = 3.0 kg x 9.8 m/s^2 = 29.4 N
Work = 29.4 N x 240 m
Therefore, the work done against the gravitational force is equal to 29.4 N x 240 m = 7056 J = 7.1 kJ (rounded to one decimal place).
So, the correct answer is 7.2 kJ.
Question 32 Report
A generator manufacturing company accidentally made an AC generator instead of a DC generator. To fix this error,
Answer Details
An AC generator uses slip rings to transfer the induced current smoothly to the circuit. A DC generator uses split rings to transfer the induced current to the circuit and also convert the induced AC into pulsating DC. So, to convert an AC generator into a DC generator, the slip rings needs to be replaced with split rings.
Question 33 Report
The pinhole camera works on
Answer Details
The pinhole camera works on the principle of the rectilinear propagation of light. This principle states that light travels in straight lines. When light passes through the tiny hole in a pinhole camera, it forms an inverted image on the opposite side of the camera. The size of the image depends on the distance between the object and the pinhole.
Question 34 Report
The working of the beam balance is based on the principle of
Answer Details
The working of the beam balance is based on the principle of moments.
Moments, also known as torques, are a measure of the turning effect of a force. In the case of the beam balance, it is the moments that help determine the equilibrium or balance of the system.
The beam balance consists of a beam or lever that is supported at a pivot point called the fulcrum. On either end of the beam, there are pans where the objects to be weighed are placed.
When objects of different weights are placed on the pans, the beam becomes unbalanced. This causes the beam to tilt towards the side with the heavier object. However, in order to achieve equilibrium or balance, the moments on both sides of the beam must be equal.
The moment of a force is calculated by multiplying the magnitude of the force by the perpendicular distance from the point of rotation (the fulcrum) to the line of action of the force.
By adjusting the position of the counterweights or by moving the objects on the pans, the moment on each side of the beam can be balanced, resulting in the beam becoming level or horizontal. This indicates that the weights on both sides are equal.
Therefore, the beam balance operates on the principle of moments, where the balance is achieved by equalizing the moments on both sides of the fulcrum.
Question 35 Report
The half life of a radioactive material is 12 days. Calculate the decay constant.
Answer Details
The decay constant of a radioactive material represents the probability that an atom of the material will decay in a unit of time. In this case, we are given the half-life of the material which is the time it takes for half of the radioactive atoms to decay.
The relationship between the decay constant (λ) and the half-life (T½) is given by the formula:
λ = ln(2) / T½
where ln(2) is the natural logarithm of 2.
To find the decay constant, we can plug in the given half-life value into the formula. In this case, the half-life is 12 days.
λ = ln(2) / 12
Using a calculator, we can calculate the value of ln(2) ≈ 0.6931.
λ = 0.6931 / 12 ≈ 0.05775 day^(-1)
Therefore, the decay constant for this radioactive material is approximately 0.05775 day^(-1).
The correct answer is 0.05775 day^(-1).
Question 36 Report
Which of the following materials is a good insulator?
Answer Details
A good insulator is a material that does not easily allow heat or electricity to pass through it. It acts as a barrier, preventing the flow of heat or electricity. Out of the given options, rubber is a good insulator.
Rubber is made up of long chains of molecules that are closely packed together. These chains do not allow the easy movement of heat or electricity. This means that when heat or electricity tries to pass through rubber, it encounters resistance, making it difficult for it to flow.
In contrast, materials like silver, water, and copper are good conductors rather than insulators.
Silver is an excellent conductor of electricity and heat because its atoms have loosely bound electrons that are free to move. This allows for the easy transfer of heat or electricity throughout the material.
Water is also a good conductor of both heat and electricity. It contains charged particles called ions that can carry electric current. Additionally, water molecules are able to transfer heat through convection.
Copper is widely used in electrical wiring because it is an excellent conductor of electricity. Like silver, its atoms have free electrons that can move easily and transfer electrical energy.
Therefore, rubber is the material that serves as a good insulator, while silver, water, and copper are good conductors of heat and electricity.
Question 37 Report
Which of the following thermometers measures temperature from the thermal radiation emitted by objects?
Answer Details
A pyrometer thermometer measures temperature from the thermal radiation emitted by objects.
When objects are heated, they emit thermal radiation, which is a form of electromagnetic radiation. This radiation is primarily in the infrared wavelength range. A pyrometer thermometer is specifically designed to measure the intensity of this thermal radiation and convert it into a temperature reading.
The pyrometer thermometer works based on the principle of measuring the amount of thermal radiation reaching the sensor. This is done using a detector that is sensitive to the infrared wavelength range. The detector absorbs the thermal radiation emitted by the object and generates an electrical signal proportional to the intensity of the radiation.
The electrical signal from the detector is then processed by the thermometer's electronics to calculate and display the corresponding temperature. The calibration of the thermometer ensures accurate temperature readings based on the known relationship between the intensity of thermal radiation and temperature.
Pyrometer thermometers are commonly used in industrial applications where contact-based temperature measurement methods are not feasible or accurate enough. They can measure temperatures of objects from a distance without physically touching them, which makes them suitable for measuring high temperatures, moving objects, or objects in hazardous or inaccessible environments.
Therefore, the pyrometer thermometer is the correct option for measuring temperature from thermal radiation emitted by objects.
Question 38 Report
In an AC circuit, resonance occurs when the impedance of the circuit is:
Answer Details
In an AC circuit, resonance occurs when the impedance of the circuit is minimum.
Impedance is the total opposition to the flow of alternating current in a circuit, and it consists of two components: resistance (R) and reactance (X).
Reactance can be further divided into two types: inductive reactance (XL) and capacitive reactance (XC).
At resonance, the inductive reactance and the capacitive reactance are equal in magnitude and opposite in sign. This means that their effects cancel each other out, resulting in a minimum total reactance.
Since impedance is the combination of resistance and reactance, when the reactance is at its minimum, the impedance of the circuit is also at its minimum.
So, in summary, resonance occurs in an AC circuit when the impedance is minimum. At resonance, the inductive reactance and the capacitive reactance cancel each other out, resulting in a minimum total reactance and minimum impedance.
Question 39 Report
The property of wave shown in the diagram above is?
Answer Details
The property of the wave shown in the diagram is diffraction.
Diffraction is the bending or spreading out of waves as they encounter an obstacle or pass through an opening. It occurs when waves encounter an obstacle that is comparable in size to their wavelength.
In the diagram, you can see that the wave is encountering an opening or a slit, and as a result, it is spreading out or bending around the edges of the opening. This bending or spreading out is characteristic of diffraction.
Diffraction is an important phenomenon in wave behavior and is observed in various situations, such as when sound waves pass through a doorway or when light waves pass through a narrow slit. It helps us understand how waves interact with obstacles and openings in their path.
In summary, the property of the wave shown in the diagram is diffraction, which is the bending or spreading out of waves as they encounter an obstacle or pass through an opening.
Question 40 Report
A wire of radius 0.2 mm is extended by 0.5% of its length when supported by a load of 1.5 kg. Determine the Young's modulus for the material of the wire.
[Take g = 10 ms-2]
Would you like to proceed with this action?