Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
A missile is launched with a speed of 75 ms-1 at an angle of 22° above the surface of a warship. Find the horizontal range achieved by the missile. Ignore the effects of air resistance.
[Take g = 10 ms-1]
Question 2 Report
The electrolyte used in the Nickel-Iron (NiFe) accumulator is
Answer Details
The electrolyte used in the Nickel-Iron (NiFe) accumulator is **potassium hydroxide solution**.
In a Nickel-Iron accumulator, the electrolyte is the substance that allows the flow of electric current between the electrodes. It is essential for the proper functioning of the accumulator.
Potassium hydroxide solution is the ideal electrolyte for the NiFe accumulator due to its properties. It has good electrical conductivity, which means it allows the movement of ions between the positive and negative electrodes, enabling the flow of electrons and facilitating the charging and discharging process.
In addition to good conductivity, potassium hydroxide solution also has other beneficial properties for the NiFe accumulator. It is stable, ensuring a longer lifespan for the accumulator. It is also less prone to self-discharge, meaning the accumulator can retain its charge for a longer period without significant loss.
Therefore, the electrolyte used in the Nickel-Iron (NiFe) accumulator is potassium hydroxide solution.
Question 3 Report
From the diagram above, if the potential difference across the resistor, capacitor and inductor are 60V, 120V and 30V respectively, the effective potential difference is
Answer Details
Question 4 Report
Which of the following is NOT an example of elementary modern physics?
Answer Details
Classical mechanics is a branch of physics that deals with the motion of macroscopic objects. It is based on the principles of Newton's laws of motion and is not considered to be part of elementary modern physics.
The other three options, quantum mechanics, special relativity, and nuclear physics, are all considered to be part of elementary modern physics because they deal with the behavior of matter and energy at the atomic and subatomic levels.
Question 5 Report
When a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer because the wood is
Answer Details
When a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer because the wood is adhesive to water.
Adhesion is the attraction between different substances, in this case, water and wood. Wood is a porous material, meaning it has tiny holes or gaps in its surface. These tiny holes create a large surface area for the water droplet to interact with.
When the water droplet comes into contact with the wood, the adhesive forces between the water molecules and the wood molecules are stronger than the cohesive forces between the water molecules. This causes the water droplet to spread out, trying to maximize its contact with the wood surface.
The spreading out of the water droplet forms a thin layer because the wood surface is not completely smooth. Instead, it has irregularities and imperfections, which allow the water to seep into those gaps and spread out further.
Therefore, when a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer due to the adhesive forces between the water and the wood surface.
Question 6 Report
How much net work is required to accelerate a 1200 kg car from 10 ms-1 to 15 ms-1
Answer Details
Question 7 Report
An air bubble of radius 4.5 cm initially at a depth of 12 m below the water surface rises to the surface. If the atmospheric pressure is equal to 10.34 m of water, the radius of the bubble just before it reaches the water surface is
Question 8 Report
Which of the following statements regarding the application of electrical conduction via gases is/are correct?
Electrical conduction in gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Photocells
(iv) Cathode ray oscilloscope/T.V. tubes
Answer Details
Electrical conduction of gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Advertising industry/Neon signs
(iv) Cathode ray oscilloscope/T.V. tubes
Question 9 Report
Question 10 Report
Which of the following liquids has the highest surface tension?
Answer Details
Surface tension is a property of liquids that arises due to the cohesive forces between the molecules at the surface. It can be thought of as the "skin" or "film" that forms on the surface of a liquid.
Considering the options given:
- Water: Water molecules have strong cohesive forces, allowing them to form hydrogen bonds with each other. As a result, water has relatively high surface tension.
- Mercury: Mercury is a metal with metallic bonding, which is much stronger than the cohesive forces in liquids. As a result, mercury has very high surface tension.
- Oil: Oils typically consist of nonpolar molecules, which have weaker cohesive forces compared to polar molecules like water. Therefore, oil generally has lower surface tension than water.
Based on this information, we can conclude that mercury has the highest surface tension among these liquids.
Question 11 Report
A step-down transformer is used on a 2.2 kV line to deliver 110 V. How many turns are on the primary windings if the secondary has 25 turns?
Answer Details
To determine the number of turns on the primary winding of a step-down transformer, we need to understand how a transformer works and how the voltage is transformed from the primary to the secondary winding.
A transformer operates on the principle of electromagnetic induction. When an alternating current flows through the primary winding, it creates a changing magnetic field that induces a voltage in the secondary winding.
The voltage ratio between the primary and secondary windings is determined by the ratio of the number of turns in each winding. This means that if we decrease the number of turns in the secondary winding compared to the primary winding, we can reduce the voltage output.
In this case, we are given that the secondary winding has 25 turns and we want to deliver 110 V. The primary winding has a higher voltage, which is 2.2 kV (kilovolts) or 2200 V.
To determine the number of turns on the primary winding, we can set up a simple equation using the voltage ratios:
Primary voltage / Secondary voltage = Primary winding turns / Secondary winding turns
Plugging in the values we have:
2200 V / 110 V = Primary winding turns / 25 turns
Simplifying the equation:
20 = Primary winding turns / 25
To solve for the number of turns on the primary winding, we can cross multiply:
20 x 25 = Primary winding turns
Therefore, the number of turns on the primary winding is 500.
So, the correct answer is 500.
Question 12 Report
A metal sphere is placed on an insulating stand. A negatively charged rod is brought close to it. If the sphere is earthed and the rod is taken away, what will be the charge on the sphere?
Answer Details
When a negatively charged rod is brought close to a metal sphere, the free electrons in the sphere are repelled from the rod and move to the other end of the sphere. This creates a region of positive charge on the side of the sphere closest to the rod, and a region of negative charge on the opposite side. The process of charge distribution stops when the net force on the free electrons inside the metal is equal to zero.
If the sphere is then earthed, the free electrons will flow from the sphere to the ground, leaving the sphere with a net positive charge.
Question 13 Report
A charge of 4.6×10−5
C is placed in an electric field of intensity 3.2×104
Vm−1
. What is the force acting on the electron?
Answer Details
To calculate the force acting on the charge in an electric field, we can use the formula: F = q * E Where: F is the force acting on the charge, q is the charge of the particle, and E is the electric field intensity. In this case, the charge is given as 4.6 × 10^(-5) C and the electric field intensity is given as 3.2 × 10^4 V/m. Substituting these values into the formula: F = (4.6 × 10^(-5) C) * (3.2 × 10^4 V/m) To multiply numbers in scientific notation, we multiply the coefficients and add the exponents: F = (4.6 * 3.2) * (10^(-5 + 4)) C * V/m F = 14.72 * 10^(-1) C * V/m To simplify, we can convert the result to standard form: F = 1.472 C * V/m Therefore, the force acting on the charge is **1.472 N**.
Question 14 Report
In the diagram above, if the south poles of two magnets stroke a steel bar, the polarities at X and Y will respectively be
Answer Details
The polarities at X and Y would be north and north.
Question 15 Report
Rainbow formation is as a result of the combination of which of the following phenomena?
(i) Reflection
(ii) Dispersion
(iii) Total internal reflection
(iv) Refraction
Answer Details
As light ray enters a drop of water the light is refracted at the surface and at the end of the drop, it is totally internally reflected in which the reflected light returns to the front surface, where it again undergoes refraction as it moves from water to air. The result of this is a dispersed light of colours of different wavelengths.
Question 16 Report
The property of wave shown in the diagram above is?
Answer Details
The property of the wave shown in the diagram is diffraction.
Diffraction is the bending or spreading out of waves as they encounter an obstacle or pass through an opening. It occurs when waves encounter an obstacle that is comparable in size to their wavelength.
In the diagram, you can see that the wave is encountering an opening or a slit, and as a result, it is spreading out or bending around the edges of the opening. This bending or spreading out is characteristic of diffraction.
Diffraction is an important phenomenon in wave behavior and is observed in various situations, such as when sound waves pass through a doorway or when light waves pass through a narrow slit. It helps us understand how waves interact with obstacles and openings in their path.
In summary, the property of the wave shown in the diagram is diffraction, which is the bending or spreading out of waves as they encounter an obstacle or pass through an opening.
Question 17 Report
A wire of radius 0.2 mm is extended by 0.5% of its length when supported by a load of 1.5 kg. Determine the Young's modulus for the material of the wire.
[Take g = 10 ms-2]
Question 18 Report
The half life of a radioactive material is 12 days. Calculate the decay constant.
Answer Details
The decay constant of a radioactive material represents the probability that an atom of the material will decay in a unit of time. In this case, we are given the half-life of the material which is the time it takes for half of the radioactive atoms to decay.
The relationship between the decay constant (λ) and the half-life (T½) is given by the formula:
λ = ln(2) / T½
where ln(2) is the natural logarithm of 2.
To find the decay constant, we can plug in the given half-life value into the formula. In this case, the half-life is 12 days.
λ = ln(2) / 12
Using a calculator, we can calculate the value of ln(2) ≈ 0.6931.
λ = 0.6931 / 12 ≈ 0.05775 day^(-1)
Therefore, the decay constant for this radioactive material is approximately 0.05775 day^(-1).
The correct answer is 0.05775 day^(-1).
Question 19 Report
Find the tension in the two cords shown in the figure above. Neglect the mass of the cords, and assume that the angle is 38° and the mass m is 220 kg
[Take g = 9.8 ms-2]
Answer Details
W = mg = 220 x 9.8 = 2156 N
⇒Sin 38º = 2156T1
⇒ T1 = 2156Sin38
⇒ T1 = 3502 N
Cos 38º = T2T1
⇒ T2 = 3502 x Cos 38º
⇒ T2 = 2760 N
; T1
= 3502 N, T2
= 2760 N.
Question 20 Report
A relative density bottle has a mass of 19 g when empty. When it is completely filled with water, its mass is 66 g. What will be its mass if completely filled with alcohol of relative density 0.8?
Answer Details
Let mb=mass of empty bottle,
mw
=mass of water only and
ma
= mass of alcohol only
given; mb
=19g
mb
+ mw
= 66g
mb
+ ma
= ?
R.d=0.8
R.d=mass of alcohol
massofalcoholmassofequalvolumeofwater
mass of equal volume of water = mw
=66-19=47g
0.8 = ma47
ma
=0.8×47 =37.6g
mb
+ ma
= 19+37.6=56.6g
Question 21 Report
Calculate the absolute pressure at the bottom of a lake at a depth of 32.8 m. Assume the density of the water is 1 x 10-3 kgm-3 and the air above is at a pressure of 101.3 kPa.
[Take g = 9.8 ms-2]
Question 22 Report
A generator manufacturing company accidentally made an AC generator instead of a DC generator. To fix this error,
Answer Details
An AC generator uses slip rings to transfer the induced current smoothly to the circuit. A DC generator uses split rings to transfer the induced current to the circuit and also convert the induced AC into pulsating DC. So, to convert an AC generator into a DC generator, the slip rings needs to be replaced with split rings.
Question 23 Report
Which of the following is NOT a limitation of experimental measurements?
Answer Details
Instrument resolution is not a limitation of experimental measurements. It is the smallest change in a measured quantity that can be detected by an instrument. While instrument resolution limits the accuracy of a measurement, it is not a limitation of experimental measurements itself.
Question 24 Report
The pitch of a musical note is determined by the frequency of the sound wave that it produces. If two instruments have the same frequency, which of the following factors will most affect the difference in their pitches?
Answer Details
The frequency of a sound wave is proportional to the tension of the string. If two instruments have the same frequency, but one has a tighter string, then the instrument with the tighter string will have a higher pitch.
The other factors listed, such as the size of the instrument, the material of the instrument, and the shape of the instrument, will also affect the pitch of the instrument, but they will have a smaller effect than the tension of the string.
Question 25 Report
Which of the following is a type of incandescent light source?
Answer Details
The Tungsten filament lamp is a type of incandescent light source.
An incandescent light source works by using electricity to heat a filament inside the bulb until it becomes so hot that it emits light. In a tungsten filament lamp, the filament is made of tungsten, which is a metal that has a very high melting point. This allows the filament to get extremely hot without melting.
When an electric current passes through the filament, it heats up and starts to glow, producing visible light. The light emitted by a tungsten filament lamp is actually a result of the high temperature, which causes the atoms in the filament to vibrate and release energy in the form of light.
Incandescent light sources like tungsten filament lamps have been widely used for many years because they produce a warm, yellowish light that is similar to natural sunlight. However, they are not very energy-efficient, as a significant amount of the electrical energy is converted into heat rather than light.
In recent years, there has been a shift towards more energy-efficient alternatives like LED lamps and fluorescent lamps. LED lamps use a different mechanism to produce light, using a semiconductor that emits light when electric current passes through it. Fluorescent lamps use a gas-filled tube that emits ultraviolet light when electric current flows through it, and this ultraviolet light is then converted into visible light by a phosphor coating inside the tube.
So, in summary, the tungsten filament lamp is the type of incandescent light source among the options given. It works by heating a tungsten filament to a very high temperature, causing it to emit light. However, it is less energy-efficient compared to LED and fluorescent lamps.
Question 26 Report
Which of the following types of electromagnetic waves is used in night vision goggles?
Answer Details
Night vision goggles use infrared waves to enable the user to see in the dark.
Infrared waves are a type of electromagnetic radiation that have longer wavelengths than visible light. They fall between the visible and microwave regions on the electromagnetic spectrum. Unlike visible light, which is visible to the human eye, infrared waves cannot be seen without the use of specialized devices such as night vision goggles.
When it is dark, objects do not emit visible light that can be detected by the human eye. However, they do emit heat in the form of infrared radiation. Night vision goggles work by detecting and amplifying this infrared radiation, which is then converted into visible light that can be seen by the user.
The goggles contain an image intensifier tube that is sensitive to infrared radiation. This tube amplifies the incoming infrared light and converts it into an image that can be seen through the goggles. The resulting image appears green because the human eye is more sensitive to green light.
Therefore, to see in the dark, night vision goggles use infrared waves to detect and amplify the infrared radiation emitted by objects. This enables the user to have enhanced vision in low-light conditions or complete darkness.
Question 27 Report
Light of wavelength 589 nm in vacuum passes through a piece of fused quartz of index of refraction n = 1.458. What is the frequency of the light in fused quartz?
[Speed of light c = 3 *10^8ms-1]
Question 28 Report
The terminals of a battery of emf 24.0 V and internal resistance of 1.0 Ω is connected to an external resistor 5.0 Ω. Find the terminal p.d.
Answer Details
To find the terminal p.d. (potential difference), we need to consider the concept of voltage in a circuit. Voltage is the amount of electrical energy per unit charge provided by a power source, in this case, the battery.
In this problem, we are given:
EMF (electromotive force) of the battery = 24.0 V
Internal resistance of the battery = 1.0 Ω
External resistor = 5.0 Ω
When the battery is connected to the external resistor, a current will flow in the circuit. This current is determined by Ohm's law, which states that the current flowing in a circuit is directly proportional to the voltage applied and inversely proportional to the resistance:
I = V / R
where:
I is the current flowing in the circuit
V is the voltage applied
R is the resistance of the circuit
In this case, the voltage applied is the emf of the battery, and the resistance is the sum of the internal resistance and the external resistor.
We can calculate the current flowing in the circuit:
I = 24.0V / (1.0Ω + 5.0Ω) = 24.0V / 6.0Ω = 4.0A
Now, the terminal p.d. is the voltage drop across the external resistor. We can calculate it using Ohm's law:
V = I * R
Substituting the values:
V = 4.0A * 5.0Ω = 20.0V
Therefore, the terminal p.d. is 20.0V.
Question 29 Report
The branch of physics that deals with the motion of objects and the forces acting on them is called:
Answer Details
The branch of physics that deals with the motion of objects and the forces acting on them is called mechanics.
Mechanics is the foundation of physics that studies how objects move and interact under the influence of forces. It encompasses both the study of the motion of macroscopic objects, such as cars and planets, and the behavior of microscopic particles, such as atoms and molecules.
Mechanics is divided into two main branches:
Therefore, when referring to the branch of physics that specifically focuses on the motion of objects and the forces acting on them, the correct answer is mechanics.
Question 30 Report
An open-tube mercury manometer is used to measure the pressure in a gas tank. When the atmospheric pressure is 101,325 Pa
, what is the absolute pressure in Pa
in the tank if the height of the mercury in the open tube is 25 cm higher
Question 31 Report
A lorry accelerates uniformly in a straight line with acceleration of 4ms-1 and covers a distance of 250 m in a time interval of 10 s. How far will it travel in the next 10 s?
Answer Details
Question 32 Report
A beam of light traveling in water is incident on a glass which is immersed in the water. The incident beam makes an angle of 40o
with the normal. Calculate the angle of refraction in the glass.
[Refractive index of water = 1.33, Refractive index of glass = 1.5]
Question 33 Report
A 35 kΩ is connected in series with a resistance of 40 kΩ. What resistance R must be connected in parallel with the combination so that the equivalent resistance is equal to 25 kΩ?
Answer Details
For the combination in series;
⇒R1 = 35kΩ + 40kΩ = 75kΩ
R is combined with 75kΩ in parallel to give 25kΩ
= 1Req
= 1R
+ 1R
= 125
= 1R
+ 175
= 125
- 175
+ 1R
= 3−175
= 1R
= 275
= 1R
= 752
= R
; R = 37.5k Ω
Question 34 Report
An object is placed 35 cm away from a convex mirror with a focal length of magnitude 15 cm. What is the location of the image?
Answer Details
Let's understand how a convex mirror forms images. In a convex mirror, the center of curvature and the focal point lie behind the mirror. Convex mirrors always produce virtual, upright, and diminished images.
Here, we are given that the object is placed 35 cm away from the convex mirror and the mirror has a focal length of 15 cm.
To find the location of the image, we can use the mirror formula, which states:
1/f = 1/v - 1/u
Where: - f is the focal length of the mirror, - v is the distance of the image from the mirror (negative for virtual image), - u is the distance of the object from the mirror (negative for real object in front of the mirror).
In this case, f = 15 cm and u = -35 cm (negative because the object is in front of the mirror).
Substituting these values into the formula, we get:
1/15 = 1/v - 1/-35
Simplifying the equation, we get:
1/v = 1/15 + 1/35
To add the fractions, we find the common denominator, which is 105. Then, we have:
1/v = (7 + 3)/105
1/v = 10/105
Simplifying further, we get:
1/v = 2/21
To solve for v, we take the reciprocal on both sides of the equation:
v = 21/2
Therefore, the location of the image is 10.5 cm behind the mirror.
Question 35 Report
A 200 kg load is raised using a 110 m long lever as shown in the diagram above. The load is 10m from the pivot P. If the efficiency of the the lever is 80%, find the effort E required to lift the load.
[Take g = 10ms-2]
Answer Details
To find the effort E required to lift the load, we first need to understand the concept of mechanical efficiency in levers.
A lever is a simple machine that consists of a rigid beam (lever arm) that pivots around a fixed point called the fulcrum. In this case, the fulcrum is point P.
The mechanical efficiency of a lever is defined as the ratio of the output work done (load lifted) to the input work done (effort applied). Mathematically, it can be expressed as:
Efficiency = (Output Work / Input Work) * 100%
In this problem, the load is the output work and the effort is the input work.
Given: Load = 200 kg Length of lever (distance between fulcrum and load) = 10 m Efficiency = 80% Gravitational acceleration (g) = 10 m/s^2
To calculate the effort, let's first calculate the output work:
Output Work = Load * Distance lifted
The distance lifted is equal to the length of the lever arm, which is 10 m.
Output Work = 200 kg * 10 m = 2000 kg·m
Since 1 kg·m is equivalent to 10 J (1 Joule), we can convert the units:
Output Work = 2000 kg·m * 10 J/kg·m = 20000 J
Now, let's calculate the input work:
Input Work = Effort * Distance moved by the effort
The distance moved by the effort is the length of the lever arm, which is 110 m.
Input Work = Effort * 110 m
Using the formula for mechanical efficiency, we can rewrite it as:
Efficiency = (Output Work / Input Work) * 100%
Solving for the effort:
Effort = (Output Work / (Efficiency/100)) / Distance moved by the effort
Effort = (20000 J / (80/100)) / 110 m
Simplifying the equation:
Effort = (20000 J / 0.8) / 110 m
Effort = 250 J / m
Given that g = 10 m/s^2, we know that 1 N = 1 kg·m/s^2. Therefore, we can convert the units:
Effort = (250 J / m) / (1 kg·m/s^2 / 1 N)
Effort = 250 N
Therefore, the effort E required to lift the load is 250 N.
Question 36 Report
Which of the following is a type of wave that is both mechanical and longitudinal?
Answer Details
A wave that is both mechanical and longitudinal is sound waves.
Sound waves are created by the vibration of an object, such as a speaker, which causes the air particles around it to vibrate. These vibrations then travel through the air in the form of a wave.
Sound waves are classified as mechanical waves because they require a medium, such as air, water, or solid objects, to travel through. Without a medium, sound waves cannot propagate.
Furthermore, sound waves are classified as longitudinal waves because the particles in the medium vibrate parallel to the direction of the wave. This means that as the sound wave travels, the particles in the medium move back and forth in the same direction as the wave itself.
In contrast, water waves and seismic waves are mechanical waves, but they are not longitudinal. Water waves are categorized as transverse waves because the particles in the water move up and down at right angles to the direction of the wave. Seismic waves, which include earthquake waves, can be both transverse and longitudinal, but typically the primary seismic waves are classified as transverse waves.
Lastly, light waves are not mechanical waves but rather electromagnetic waves. They do not require a medium to travel through and can propagate in a vacuum, unlike sound waves.
Question 37 Report
The near point of a patient's eye is 50.0 cm. What power (in diopters) must a corrective lens have to enable the eye to see clearly an object 25.0 cm away?
Question 38 Report
A piano wire 50 cm long has a total mass of 10 g and its stretched with a tension of 800 N. Find the frequency of the wire when it sounds its third overtone note.
Answer Details
T=800N; I=50cm=0.5m,
m=10g=0.01kg
fundamental freq: fo
=?
fo
= 121√Tμ
μ =m1
=0.010.5
⇒ fo
=12×0.5
√8000.02
fo
⇒√ 40,000
⇒1st overtone = 2fo
=2×200 = 400Hz
⇒2nd overtone =3fo
=3×200=600Hz
∴3rd over tone= 4fo
=4×200=800Hz
Question 39 Report
A parallel plate capacitor separated by an air gap is made of 0.8m2 tin plates and 20 mm apart. It is connected to 120 V battery. What is the charge on each plate?
Take εo = 8.85 * 10-12 Fm−1
Answer Details
To calculate the charge on each plate of a parallel plate capacitor, we can use the formula Q = CV, where Q is the charge, C is the capacitance, and V is the voltage applied. The capacitance of a parallel plate capacitor can be calculated using the formula C = εA/d, where C is the capacitance, ε is the permittivity of the medium (in this case, air), A is the area of each plate, and d is the distance between the plates. Given: Area of each plate (A) = 0.8 m^2 Distance between the plates (d) = 20 mm = 0.02 m Permittivity of air (ε) = 8.85 x 10^-12 F/m Using the formula for capacitance, we can calculate C: C = εA/d = (8.85 x 10^-12 F/m)(0.8 m^2)/(0.02 m) = 8.85 x 10^-12 F/m * 40 F = 3.54 x 10^-10 F Now, we can use the formula Q = CV to calculate the charge on each plate: Q = (3.54 x 10^-10 F)(120 V) = 4.25 x 10^-8 C = 42.5 x 10^-9 C = 42.5 nC Therefore, the charge on each plate of the parallel plate capacitor is **42.5 nC**.
Question 40 Report
The diagram above illustrates the penetrating power of some types of radiation. X, Y and Z are likely
Answer Details
The penetrating power of alpha rays, beta rays, and gamma rays varies greatly. Alpha particles can be blocked by a few pieces of paper. Beta particles pass through paper but are stopped by aluminum foil. Gamma rays are the most difficult to stop and require concrete, lead, or other heavy shielding to block them.
Therefore, X = γ-ray; Y = α-particle; Z = β-particle
Would you like to proceed with this action?