Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
Scandium is not regarded as a transition metal because its ion has
Answer Details
Scandium is not regarded as a transition metal because its ion has no electron in the d-orbital.
To understand this, let's first define a transition metal. A transition metal is defined as an element that has an incomplete d-subshell in either its elemental form or in any of its common oxidation states.
When Scandium (Sc) loses electrons to form its most common ion (Sc3+), it loses three electrons. These electrons are removed from the 4s and 3d orbitals. The electron configuration for Scandium is [Ar] 3d1 4s2. Upon losing three electrons to form Sc3+, the resulting electron configuration is [Ar], which means there are:
As a result, there are no electrons in the d-orbital of the Scandium ion, which does not meet the criteria for a transition metal.
Question 2 Report
The volume occupied by 1 mole of an ideal gas at a temperature of 130 C and a pressure of 1.58 atm is
[ R = 0.082 atm dm3 K−1 mol−1 ]
Answer Details
According to the Ideal gas equation, PV = nRT
Given: P = 1.58 atm, V = ?, n = 1 mole, R = 0.082, T= 13 + 273K = 286K
Substituting all the given parameters,
V = nRTP
V = 1×0.082×2861.58
V = 14.84 dm3
Question 3 Report
When Calcium ethynide is decomposed by water, the gas produced is
Answer Details
When water reacts with calcium ethynide, the gas produced is ethyne (also known as acetylene), which is represented by the chemical formula C2H2.
The chemical reaction involved is as follows:
CaC2 + 2 H2O → C2H2 + Ca(OH)2
Let's break down this process to make it understandable:
The key point to remember here is that the gas produced is **ethyne (C2H2)**, which is useful in various industrial applications, such as welding and as a precursor for other chemicals.
Question 4 Report
Answer Details
When a metal reacts with an acid, a chemical reaction takes place in which the metal displaces the hydrogen in the acid. This reaction produces a salt and hydrogen gas is liberated in the process.
Let's break it down further:
The general equation for the reaction is:
Metal + Acid → Salt + Hydrogen Gas
For example, when zinc (a metal) reacts with hydrochloric acid (an acid), the reaction is as follows:
Zn + 2HCl → ZnCl2 + H2
Here, zinc chloride (a salt) and hydrogen gas are produced. This illustrates that salt and hydrogen gas are formed when a metal reacts with an acid.
Question 5 Report
A radioactive element of mass 1g has half-life of 2 minutes, what fraction of the substance would have disintegrated after 10 minutes?
Answer Details
Originalmass2n
= Residual mass
Where n = number of activity = exposuretimehalflife
Given:
Original mass = 1g, exposure time = 10 minutes , half life = 2 minutes, Residual mass = ?
Substituting all the given parameters appropriately, we have
n = 102
n = 5
Originalmass2n = Residual mass
125
5 = Residual mass
132 = Residual mass
Residual mass = 132
or 0.03125g
Question 6 Report
An example of highly unsaturated hydrocarbon is
Answer Details
To determine a highly unsaturated hydrocarbon, we must first understand the concept of saturation in hydrocarbons. **Saturated hydrocarbons** are compounds that contain the maximum possible number of hydrogen atoms, single-bonded to carbon atoms, and they are alkanes. **Unsaturated hydrocarbons** have one or more double or triple bonds between carbon atoms, which reduces the number of hydrogen atoms that can be bonded.
Examining the given options:
Based on this analysis, **C2H2** (ethyne) is a highly unsaturated hydrocarbon due to the presence of a **triple bond**. The triple bond signifies a greater level of unsaturation compared to double bonds in hydrocarbons like ethene (C2H4).
Question 7 Report
The term strong and weak acids is used to indicate the
Answer Details
The terms strong and weak acids are used to indicate the extent of ionization of an acid. This means how completely an acid dissociates into its ions in water.
Strong acids completely dissociate in water. This means that nearly all the acid molecules break down into positive hydrogen ions (H+) and their respective anions. Examples include hydrochloric acid (HCl), sulfuric acid (H2SO4), and nitric acid (HNO3).
Weak acids, on the other hand, only partially dissociate in water. This means that only a small fraction of the acid molecules break down into ions. Most of the acid remains in its molecular form. An example of a weak acid is acetic acid (CH3COOH), which is found in vinegar.
Therefore, the strength of an acid in terms of its classification as strong or weak is about how fully it dissociates into ions in an aqueous solution, not about the number of H+ ions or the strength of its action on substances.
Question 8 Report
25.0g of potassium chloride were dissolved in 80g of distilled water at 300 C. Calculate the solubility of the solute in mol dm3 . [K =39, Cl = 35.5]
Answer Details
To calculate the solubility of potassium chloride (KCl) in mol dm3, we need to follow these steps:
Molar mass of KCl = 39 + 35.5 = 74.5 g/mol
Moles of KCl = Mass of KCl / Molar mass of KCl = 25.0 g / 74.5 g/mol = 0.3356 mol
Convert ml to liters: 80 ml = 0.080 L
Concentration = Moles of solute / Volume of solvent in liters = 0.3356 mol / 0.080 L = 4.195 mol/dm3
The solubility of potassium chloride at 30°C in mol/dm3 is therefore approximately 4.2 mol/dm3.
Question 9 Report
Alkylation of benzene is catalyzed by
Answer Details
Alkylation of benzene is a part of a reaction class called **Friedel-Crafts alkylation**. In this reaction, an alkyl group is transferred to the aromatic benzene ring, making it a more complex molecule. The catalyst used in this process is **aluminium chloride (AlCl3)**.
Here's how the reaction typically works:
In contrast, the other options wouldn't effectively catalyze alkylation of benzene for the following reasons:
Therefore, **aluminium chloride** is the catalyst used for the alkylation of benzene in Friedel-Crafts reactions.
Question 10 Report
Sulphur(IV)oxide can be used as a
Answer Details
Sulphur(IV) oxide has many uses including food preservation, refrigeration, laboratory reagent and solvent, sulphuric acid production, fumigant etc.Sulphur(IV) oxide is a good refrigerant because it has a high heat of evaporation and can be easily condensed.
Question 11 Report
The table above shows the formulae of some ions. In which of these compounds is the formula not correct?
Answer Details
To assess the correctness of the chemical formulae for the given compounds, let's break down each compound:
Aluminium Tetraoxosulphate(VI), Al2(SO4)3:
Aluminium ion is denoted as Al3+, and the sulphate ion is SO42-. To balance the charges between the positive and negative ions:
2 x (+3) from aluminium ions = +6
3 x (-2) from sulphate ions = -6
Thus, the charges balance out, making the formula correct.
Calcium Trioxonitrate(V), Ca(NO3)2:
Calcium ion is Ca2+, and the nitrate ion is NO3-. To balance the charges:
1 x (+2) from calcium ion = +2
2 x (-1) from nitrate ions = -2
The charges balance out, therefore, this formula is also correct.
Iron(III) Bromide, Fe3Br:
Iron(III) ion is Fe3+, and bromide ion is Br-. Each iron ion would pair with three bromide ions to balance the charges:
FeBr3, where:
1 x (+3) from iron = +3
3 x (-1) from bromide = -3
The charges balance out in the correct formula which should be FeBr3, making the given formula Fe3Br incorrect.
Potassium Sulphide, K2S:
Potassium ion is K+, and sulphide ion is S2-. To balance the charges:
2 x (+1) from potassium ions = +2
1 x (-2) from sulphide ion = -2
The charges balance out, making this formula correct.
Therefore, the compound with the incorrect formula is Iron(III) Bromide where the proper chemical formula should be FeBr3, not Fe3Br.
Question 12 Report
Biodegradable pollutants are not safe in water systems because they can cause
Answer Details
Biodegradable pollutants are substances that can be broken down by natural processes and microorganisms. However, when they are present in water systems, they can lead to several environmental and health issues. One of the main concerns is their potential to cause ill health. Here's why:
When biodegradable pollutants such as organic waste are introduced into water bodies, they are decomposed by bacteria and other microorganisms. This process consumes dissolved oxygen in the water. As the oxygen levels decrease, aquatic life such as fish and plants may suffer or die due to a lack of oxygen, disrupting the entire aquatic ecosystem.
This situation is known as eutrophication, which can lead to the excessive growth of algae, commonly referred to as algal blooms. These blooms often produce toxins that are harmful to both aquatic life and humans. Furthermore, when this polluted water is used for drinking, agriculture, or recreational purposes, it poses serious health risks to humans. These risks may include gastrointestinal infections, neurological disorders, and skin problems.
In addition, as the pollutants decompose, foul smells may be released, which can affect air quality in the vicinity, although the primary concern with biodegradable pollutants in water is related to how they affect water quality and health.
Therefore, it is crucial to properly manage and treat biodegradable pollutants before they enter water systems to prevent these health hazards. Failure to do so can result in significant environmental and health issues.
Question 13 Report
Which of the following represents an order of increasing reactivity?
Answer Details
To determine the order of increasing reactivity of the elements listed, it's important to understand the general trends in metal reactivity. Metals react by losing electrons, and their reactivity is often influenced by their ability to lose these electrons easily. In many cases, generally, alkali metals are the most reactive, and noble metals are the least reactive. Here's a basic description of the reactivity of the given metals:
With these considerations in mind, the order of increasing reactivity from the given options would be:
Gold (Au) < Copper (Cu) < Tin (Sn) < Iron (Fe) < Calcium (Ca)
This is the order where the least reactive element is first (gold), and the most reactive element is last (calcium). Hence, the correct option represents the order: Au < Cu < Sn < Fe < Ca.
Question 14 Report
Determine the half-life of a first order reaction with constant 4.5 x 10−3 sec−1 .
Answer Details
To determine the half-life of a first-order reaction, you can use the formula:
Half-life (\(t_{1/2}\)) = \(\frac{0.693}{k}\)
where \(k\) is the rate constant of the reaction. For the given problem, the rate constant (\(k\)) is 4.5 x 10-3 s-1.
Substituting the value of \(k\) into the formula, we have:
\(t_{1/2} = \frac{0.693}{4.5 \times 10^{-3}}\)
Perform the division:
\(t_{1/2} = \frac{0.693}{4.5 \times 10^{-3}} \approx 154\) s
Therefore, the half-life of the reaction is 154 seconds.
Question 15 Report
127g of sodium chloride was dissolved in 1.0dm3 of distilled water at 250 C . Determine the solubility in moldm−3 of sodium chloride at that temperature. [Na = 23, Cl = 35.5]
Answer Details
To determine the solubility of sodium chloride (NaCl) in mol/dm3 at the given temperature, you need to first calculate the number of moles of NaCl dissolved.
Step 1: Calculate the molar mass of NaCl.
The molar mass of a compound is found by adding the atomic masses of its constituent elements:
- Sodium (Na) has an atomic mass of 23.
- Chlorine (Cl) has an atomic mass of 35.5.
Thus, the molar mass of NaCl = 23 + 35.5 = 58.5 g/mol.
Step 2: Calculate the number of moles of NaCl.
The formula to calculate moles is:
Number of moles = Mass (g) / Molar mass (g/mol)
Given mass of NaCl = 127 g,
Number of moles = 127 g / 58.5 g/mol ≈ 2.17 mol
Step 3: Calculate the solubility in mol/dm3.
Since the sodium chloride is dissolved in 1.0 dm3 of water, the solubility is the same as the number of moles, since the volume is already 1.0 dm3.
Therefore, the solubility of sodium chloride at that temperature is 2.17 mol/dm3.
Rounded to the options given, 2.17 mol/dm3 is approximately equal to 2.2 mol/dm3.
Question 16 Report
The basicity of tetraoxophosphate(V) acid is
Answer Details
The term basicity of an acid refers to the number of hydrogen ions (H⁺) that an acid can donate when it dissociates in water. In simpler terms, it's the number of replaceable hydrogen ions in one molecule of the acid.
Tetraoxophosphate(V) acid is another name for phosphoric acid, which has the chemical formula H₃PO₄. In this molecule, there are three hydrogen (H) atoms bonded to the phosphate group (PO₄).
When H₃PO₄ dissolves in water, it donates hydrogen ions in three steps:
Therefore, phosphoric acid, or tetraoxophosphate(V) acid, can donate a total of three hydrogen ions. Hence, the basicity of tetraoxophosphate(V) acid is 3.
Question 17 Report
How many isomers has the organic compound represented by the formula C3 H8 O ?
Answer Details
The molecular formula C3H8O represents organic compounds that contain 3 carbon atoms, 8 hydrogen atoms, and 1 oxygen atom. Let's elucidate the possible isomers, which are molecules with the same molecular formula but different structural arrangements.
1. Alcohols: One class of compounds that can form isomers for this formula are alcohols, which include a functional group -OH.
a. Propan-1-ol: This is a straight-chain alcohol where the -OH group is on the first carbon. The structure is as follows:
CH3-CH2-CH2-OH
b. Propan-2-ol: This is another alcohol where the -OH group is on the second carbon, giving it a different structure and properties:
CH3-CH(OH)-CH3
2. Ethers: This is another class of possible isomers, where the oxygen atom is bonded to two alkyl groups.
c. Methoxyethane: Also known as ethyl methyl ether, it has a structure where the oxygen is in a bridge position between a methyl group and an ethyl group:
CH3-O-CH2-CH3
These are the possible structural isomers for this molecular formula. Therefore, the compound C3H8O has three isomers overall:
Thus, the answer is three distinct isomers.
Question 18 Report
The percentage of hydrogen in the sixth member of the class of the aliphatic alkanes is [H =1, C =12 ]
Answer Details
To determine the percentage of hydrogen in the sixth member of aliphatic alkanes, we first need to understand the general formula for alkanes. Aliphatic alkanes are a class of hydrocarbons with the general formula CnH2n+2, where 'n' is the number of carbon atoms.
The sixth member of this series will have n = 6. Therefore, the molecular formula for the sixth member is C6H14.
To find the percentage of hydrogen, we first calculate the molar mass of C6H14:
Total molar mass of C6H14 = 72 + 14 = 86
Next, we calculate the percentage of hydrogen:
Percentage of hydrogen = (Molar mass of hydrogen atoms / Total molar mass) × 100
Percentage of hydrogen = (14 / 86) × 100 = 16.28%
Therefore, the percentage of hydrogen in the sixth member of the aliphatic alkanes is 16.28%.
Question 19 Report
What would be the order of the electrolytic cell in an industry intending the production of silver plated spoons?
Answer Details
In the process of silver plating a spoon using an electrolytic cell, the correct configuration involves the following:
Cathode: The object to be plated, which in this case is the spoon. In an electrolytic cell, the cathode is where the reduction reaction occurs, and it is the surface on which the metal ions are deposited.
Anode: A rod made of silver. The anode is where oxidation occurs, meaning the silver rod will dissolve into the solution in the form of silver ions. These ions then move towards the cathode to be deposited as a thin layer on the spoon.
Electrolyte: A solution that contains a soluble silver salt (such as silver nitrate, AgNO3). The silver ions from this salt help in the process of transferring the silver from the anode to the cathode.
Thus, the proper order for silver plating a spoon in an electrolytic cell for industrial production is: "Cathode is the spoon; anode is a silver rod; electrolyte is a soluble silver salt."
Question 20 Report
Esterification reaction is analogous to
Answer Details
The **esterification reaction** is analogous to a **condensation reaction**. In chemistry, a **condensation reaction** is a type of chemical reaction where two molecules or functional groups combine to form a larger molecule, with the simultaneous loss of a small molecule, usually water. **Esterification** specifically involves the reaction between an acid (often a carboxylic acid) and an alcohol, resulting in the formation of an **ester** and the release of a molecule of water.
To explain this further, in an esterification reaction:
Conversely, the other types of reactions you've mentioned have different mechanisms:
Therefore, given the nature of how molecules join and release water, it's clear that the **esterification reaction** is analogous to a **condensation reaction**.
Question 21 Report
Water gas obtained from the gasification of coke is made up of
Answer Details
The gasification of coke to produce water gas involves reacting coke, which is primarily composed of carbon, with steam. The main chemical reaction that occurs is:
C (s) + H2O (g) → CO (g) + H2 (g)
From this reaction, the main constituents of water gas are hydrogen (H2) and carbon monoxide (CO), also known as carbon(II) oxide. Therefore, water gas obtained from the gasification of coke is made up of hydrogen and carbon(II) oxide.
Question 22 Report
The product formed when ethyne is passed through a hot tube containing finely divided iron is
Answer Details
When **ethyne** (also known as acetylene) is passed through a hot tube containing finely divided iron, a process called decomposition occurs. The heat causes the ethyne molecules to break down, and under these conditions, they **re-combine** to form structures that result in more complex molecules.
The key transformation involves the conversion of these ethyne molecules into **aromatic compounds**. Aromatic compounds, such as **benzene**, have a distinct ring structure and are characterized by **stability** due to resonance (a phenomenon where electrons are delocalized over a certain structure, providing extra stability).
Thus, when ethyne is passed through a hot iron tube, it undergoes trimerization to form benzene, an **aromatic** compound. Therefore, the product formed is **aromatic**.
Question 23 Report
Nitrogen obtained from air is not absolutely pure because it contains the following except
Answer Details
Nitrogen obtained from air is not absolutely pure because it contains other gases, including:
Question 24 Report
Na2 X ⇌ 2Na+ + X2−
The bond between Na and X is likely to be
Answer Details
The bond between Na and X is most likely to be ionic. Let's break this down simply:
In the equation provided:
Na2X ⇌ 2Na+ + X2−
The sodium (Na) atoms become positively charged ions (Na+), while X becomes a negatively charged ion (X2−). This change in charge occurs because sodium atoms donate electrons to the X atom. The donation of electrons by sodium to X indicates a transfer of electrons, which is a hallmark of an ionic bond.
In an ionic bond, electrons are transferred from one atom to another, resulting in a positively charged ion and a negatively charged ion. These oppositely charged ions attract each other, forming a strong ionic bond.
In summary, since sodium (Na) donates electrons to X forming ions, the bond between Na and X is most likely to be ionic.
Question 25 Report
The term that is not associated with petroleum industry is ?
Answer Details
Cracking, saponification and polymerization are all terminologies associated with the petroleum industry but fermentation is associated with the brewery industry.
Cracking is a chemical process that breaks down heavy hydrocarbon molecules into lighter, more useful ones.
Saponification is a chemical reaction that converts fats and oils into soap. It's not directly involved in petroleum, but it can be used to analyze petroleum products.
Polymerization is a process in the petroleum industry that converts light olefin gases into higher molecular weight hydrocarbons.
Fermentation is the process in which a substance breaks down into a simpler substance. Microorganisms like yeast and bacteria usually play a role in the fermentation process, creating beer, wine, bread,yogurt and other foods.
Question 26 Report
The constituent of petroleum fraction used in surfacing road is
Answer Details
Among the options listed, the constituent of petroleum used in surfacing roads is bitumen. Bitumen, also known as asphalt, is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It is the last fraction obtained when crude oil is distilled and is often left over after the lighter components are extracted.
Reasons why bitumen is used for road surfacing:
Due to these properties, bitumen is extensively used in road construction and surfacing, ensuring roads are durable, smooth, and safe for travel.
Question 27 Report
The number of molecules of helium gas contained in 11.5g of the gas is
Answer Details
To find the number of molecules of helium gas in a given mass, we can use Avogadro's number and the molar mass of helium.
Step 1: Determine the molar mass of helium.
Helium is a noble gas with an atomic mass of approximately 4 grams per mole (g/mol).
Step 2: Calculate the number of moles in 11.5 grams of helium.
The formula to find the number of moles is:
Number of moles = Mass (g) / Molar Mass (g/mol)
So for helium:
Number of moles = 11.5 g / 4 g/mol = 2.875 moles
Step 3: Use Avogadro's number to find the number of molecules.
Avogadro's number is 6.022 x 1023 molecules per mole.
The formula to find the number of molecules is:
Number of molecules = Number of moles x Avogadro's Number
Number of molecules = 2.875 moles x 6.022 x 1023 molecules/mole
Number of molecules ≈ 1.73 x 1024 molecules
Therefore, the number of molecules of helium gas in 11.5g of helium is approximately 1.73 x 1024.
Question 28 Report
If a stable neutral atom has a mass number of 31, the number of electrons and neutrons respectively are
Answer Details
To answer this question, let's break it down step by step:
Mass Number: The mass number is the total number of protons and neutrons in an atom's nucleus. In this case, the mass number is given as 31.
Stable Neutral Atom: A stable neutral atom has no overall electrical charge, meaning the number of protons (positively charged) must equal the number of electrons (negatively charged).
If we symbolize the number of protons by the atomic number (Z), we can say:
1. **Protons = Electrons** in a neutral atom.
2. **Mass Number (A) = Protons + Neutrons**.
Given that the mass number is 31, we have the equation:
A = Protons + Neutrons = 31.
Assuming a commonly known stable element like Phosphorus, which has an atomic number (Z) of 15, it means:
1. **Protons = 15**.
2. **Electrons = 15** (because it's a neutral atom).
3. To find Neutrons: Neutrons = Mass Number - Protons = 31 - 15 = 16.
So, in this scenario, the number of electrons is 15 and the number of neutrons is 16. This combination is found in the first option given.
Question 29 Report
Which of the following is an air pollutant?
Answer Details
An air pollutant is any substance in the air, introduced by natural or human activity, that causes harm or discomfort to living organisms, or damages the environment. Let's analyze the substances mentioned:
1. O2 (Oxygen)
Oxygen is the gas we need to breathe. It's not considered an air pollutant because it is essential for human and animal life, as well as many natural processes.
2. CO (Carbon Monoxide)
Carbon Monoxide is a colorless, odorless gas that is produced by burning fuel (like in cars and factories). This gas can be very dangerous if there is a lot of it, as it can prevent oxygen from entering the bloodstream. Because of its harmful effects, it is considered an air pollutant.
3. H2 (Hydrogen)
Hydrogen, while a flammable gas, is generally not harmful to the air or to organisms when it is released into the environment. Therefore, it is not considered an air pollutant.
4. O3 (Ozone)
Ozone is a bit tricky because it is both good and bad. Higher up in the atmosphere, it forms a layer that protects us from the sun’s UV radiation. However, at ground level, it is a harmful air pollutant. Ground-level ozone can cause health problems such as respiratory difficulties, so in this context, it is considered an air pollutant.
In conclusion, the substances that are considered air pollutants in this context are Carbon Monoxide (CO) and ground-level Ozone (O3).
Question 30 Report
The principle which states that no two electrons in the same orbitals of an atom have same value for all four quantum numbers is the
Answer Details
The principle that states that no two electrons in the same orbitals of an atom can have the same value for all four quantum numbers is the Pauli Exclusion Principle.
To understand this principle, it's important to know a bit about the structure of an atom and what quantum numbers are:
Quantum Numbers:
1. **Principal Quantum Number (n):** This describes the energy level or shell of the electron.
2. **Angular Momentum Quantum Number (l):** This describes the subshell or shape of the orbital (s, p, d, f...).
3. **Magnetic Quantum Number (ml):** This describes the specific orbital within a subshell where the electron is located.
4. **Spin Quantum Number (ms):** This describes the spin direction of the electron, which can be either +1/2 or -1/2.
The Pauli Exclusion Principle asserts that each electron in an atom has a unique set of these four quantum numbers. While electrons can share the first three quantum numbers if they are in the same orbital (meaning they share the same energy level, the same subshell, and the same specific orbital within that subshell), they must have different Spin Quantum Numbers. This means that in any given orbital, one electron can have a spin of +1/2 and the other must have a spin of -1/2. This principle is fundamental in explaining the electronic structure of atoms and, consequently, the behavior and properties of elements.
Question 31 Report
The difference in molecular mass between an alkene and alkyne with six carbon per mole is
Answer Details
To determine the difference in molecular mass between an alkene and an alkyne, let's first take a look at their general formulas.
Alkene: An alkene is a hydrocarbon with at least one double bond between carbon atoms. For an alkene with six carbon atoms, the general formula is CnH2n. Therefore, for 6 carbon atoms, the molecular formula is C6H12.
Alkyne: An alkyne is a hydrocarbon with at least one triple bond between carbon atoms. For an alkyne with six carbon atoms, the general formula is CnH2n-2. Therefore, for 6 carbon atoms, the molecular formula is C6H10.
Now let's calculate the molecular masses:
Molecular mass of alkene (C6H12):
Molecular mass of alkyne (C6H10):
The **difference** in molecular mass between the alkene and alkyne is **84 g/mol - 82 g/mol** = 2 g/mol.
Question 32 Report
The quantity of electricity required to deposit 180g of Ag from a molten silver trioxonitrate(V) is
[Ag = 108]
Answer Details
To determine the quantity of electricity required to deposit 180g of Ag (silver) from molten silver trioxonitrate(V), we need to understand the concept of electrolysis. During electrolysis, a metal can be deposited according to Faraday's laws of electrolysis.
The equivalent weight of a substance is calculated by dividing the atomic mass by the valency. For silver (Ag), the atomic mass is given as 108 and the valency of silver in AgNO3 is 1. This makes the equivalent weight of Ag 108 g/equivalent.
According to Faraday's first law of electrolysis:
Mass of substance deposited = (Equivalent weight × Quantity of electricity (in coulombs) ) / Faraday's constant (96500 C/mol)
Let's calculate the number of equivalents of silver deposited:
Number of equivalents of Ag = Mass of Ag / Equivalent weight = 180 g / 108 g/equivalent = 5/3 equivalents
The quantity of electricity required to deposit 1 equivalent of a substance is 1 Faraday (F) = 96500 C.
Therefore, the total quantity of electricity required:
Quantity of electricity = Number of equivalents × Faraday's constant
Quantity of electricity = (5/3 equivalents) × 1 F = 5/3 F = 1.67 F
Therefore, 1.67 Faraday is required to deposit 180g of Ag from a molten silver trioxonitrate(V).
Question 33 Report
The IUPAC name of the compound above is
Answer Details
To determine the IUPAC name of a compound, follow these steps:
Hence, by following these steps, if the bromo and methyl groups are both attached to the second carbon (lowest numbering possible), the IUPAC name of the compound is "2-bromo, 2-methyl butane."
Question 34 Report
An organic compound contains 53.1% Carbon, 6.2% Hydrogen, 12.4% Nitrogen, and 28.3% Oxygen by mass. What is the molecular formula of the compound if its vapour density is 56.5? [ C =12, H = 1, N = 14, O = 16].
Answer Details
To find the molecular formula of the compound, follow these steps:
1. Determine the Empirical Formula:
Start by assuming you have 100 grams of the compound. This means you have:
Now, convert these masses to moles using their atomic masses (C = 12, H = 1, N = 14, O = 16):
Next, divide each by the smallest number of moles to get the simplest ratio:
This gives us the empirical formula: C5H7NO2.
2. Determine the Molecular Formula:
The molecular formula is a multiple of the empirical formula. To determine this multiple, we need to find the empirical formula mass and compare it with the molar mass derived from the given vapor density.
Calculate the empirical formula mass:
The molar mass can be calculated from the vapor density:
Now, find the ratio of the molar mass to the empirical formula mass:
This ratio is approximately 1, indicating the molecular formula is the same as the empirical formula. Since empirical formulas typically should perfectly match the atomic proportions we derive from experiments, our calculations regarding the assumptions on the vapour and empirical formula mass remains our best match.
Therefore, the molecular formula is C5H7NO2.
Question 35 Report
Kerosene is used as solvent for
Answer Details
Kerosene is commonly used as a solvent for paints. Let me explain why in a simple way:
Kerosene is a type of fuel that is composed of hydrocarbons, which are molecules made up of hydrogen and carbon atoms. These hydrocarbons give kerosene the ability to dissolve other similar substances.
Paints often contain oils and other hydrocarbon-based compounds. Since kerosene is also hydrocarbon-based, it can effectively dissolve and thin these compounds. This makes it suitable for use as a solvent in paints, allowing the paint to be thinned or cleaned up after use. This property makes kerosene a good choice for cleaning brushes and other painting tools or for dissolving dried paint.
On the other hand, sulphur, gums, and fats are typically not dissolved effectively by kerosene because of their different chemical properties. Therefore, kerosene as a solvent is primarily useful in the context of working with paints and similar hydrocarbon-based materials.
Question 36 Report
COMPOUND | S | T | U | V | W |
FORMULA | ROR' | RCOOH' | RCOR' | ROH' | RCOOR' |
From the table above, which of these two compounds can form functional group isomers?
Answer Details
ROH' and ROR' can form functional group isomers because they are the functional groups of alcohols and ethers, respectively.
Ethers have a pair of alkyl or aromatic groups attached to a linking oxygen atom. ROH is the functional group of alcohols, which are derivatives of water with one hydrogen atom replaced by an alkyl group.
Alcohols (ROH) and ethers (ROR') can form functional group isomers because they have the same chemical formula but different functional groups. E.g CH3 CH2 OH and CH3 OCH3
Question 37 Report
Calculate the number of moles of Copper that will be deposited, if 2 Faraday of electricity is passed through the copper during the electrolysis of copper(II)tetraoxosulphate(VI)
[1F = 96500C ]
Answer Details
The electrolysis of copper(II) tetraoxosulphate(VI) involves the deposition of copper at the cathode. To understand how many moles of copper are deposited when 2 Faraday of electricity is passed through, we need to consider Faraday's first law of electrolysis. Faraday's first law states that the mass (or number of moles) of a substance deposited at an electrode is directly proportional to the quantity of electricity that is passed through the electrolyte.
A Faraday (or Faraday constant) is the charge of one mole of electrons, which is approximately **96500 coulombs** (C). During electrolysis, the chemical reaction occurring at the cathode for copper deposition can be represented by the following equation:
Cu2+ + 2e- → Cu
This equation shows that **2 moles of electrons** (represented by 2e-) are needed to deposit **1 mole of copper (Cu)**.
If we have **2 Faradays** of electricity, it means we have **2 x 96500 C = 193000 C**. Since **1 Faraday (96500 C)** is required to deposit **0.5 mole** of copper, **2 Faradays** will deposit twice that amount:
0.5 mole of copper deposited per Faraday x 2 Faradays = **1.0 mole** of copper
Thus, when **2 Faradays** of electricity are passed through copper(II) tetraoxosulphate(VI) solution, **1.0 mole** of copper will be deposited.
Question 38 Report
A major effect of oil pollution in coastal water is
Answer Details
One of the major effects of oil pollution in coastal water is the destruction of aquatic life.
When oil spills into a water body, it forms a thin layer called a sheen on the surface of the water. This oil layer blocks sunlight from reaching aquatic plants and phytoplankton, inhibiting their ability to perform photosynthesis. As a result, these plants and microorganisms suffer, impacting the entire food chain.
Moreover, oil can coat the feathers of birds and the fur of marine mammals, which affects their insulation and buoyancy, leading to hypothermia, drowning, or inability to fly. Additionally, the toxic components in oil are harmful if ingested, causing internal damage to fish and other marine organisms. These combined effects can lead to significant mortality in aquatic ecosystems, threatening biodiversity and the natural balance of coastal waters.
Therefore, oil pollution can severely affect the health and survival of aquatic life, creating disruptions that can persist for many years.
Question 39 Report
A gas that turns lime water milky is likely to be from
Answer Details
The gas that turns lime water milky is **Carbon Dioxide**. This is because carbon dioxide reacts with calcium hydroxide, which is the main component of lime water, to form calcium carbonate. This chemical reaction can be represented by the equation:
Ca(OH)2 (aq) + CO2 (g) → CaCO3 (s) + H2O (l)
In this equation, calcium hydroxide ({Ca(OH)2}) in the lime water reacts with carbon dioxide ({CO2}) to produce calcium carbonate ({CaCO3}) and water ({H2O}).
The result is a milky or cloudy appearance due to the formation of insoluble calcium carbonate precipitate in the lime water. This reaction is a common test for the presence of carbon dioxide gas.
Among the options given, **Trioxocarbonate(IV)** is another name for the Carbonate group involving the gas carbon dioxide ({CO2}). Hence, the gas related to Trioxocarbonate(IV) is the one that turns lime water milky.
Question 40 Report
During the fractional distillation of crude oil, the fraction that distills at 200 - 2500 C is
Answer Details
The petroleum fractions that distill at 200–250°C are naphtha and kerosene,
Would you like to proceed with this action?