Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
The pH of a 0.001 mol dm−3 of H2 SO4 is
[Log10 2 = 0.3]
Answer Details
The question is asking about the pH of a 0.001 mol dm−3 solution of H2SO4 (sulfuric acid). To find the pH, we need to understand how sulfuric acid dissociates in water.
Step 1: Dissociation of H2SO4
Sulfuric acid, H2SO4, is a strong acid and dissociates completely in water in two steps:
1. The first dissociation: H2SO4 → H+ + HSO4-
2. The second dissociation: HSO4- → H+ + SO42-
For dilute solutions, particularly below 0.1 M, the first dissociation provides the major contribution to the H+ concentration. The second dissociation also contributes slightly to the acidity, but for simplicity and due to the dilute nature of this solution, the first step's contribution is primarily considered.
Step 2: Calculate the H+ Concentration
Since this is a strong acid and dissociates completely, for every 1 mole of H2SO4, we get 2 moles of H+. Therefore, for a 0.001 mol dm−3 solution of H2SO4, the concentration of H+ ions will be:
2 x 0.001 = 0.002 mol dm−3
Step 3: Calculate the pH
The pH is calculated using the formula: pH = -log[H+]
Substitute the H+ concentration:
pH = -log(0.002)
We know that log(10-2) = -2 and log(2) = 0.3 (as provided), so:
pH = -(log(2) + log(10-3))
pH = -(0.3 - 3)
pH = 3 - 0.3
pH = 2.7
Therefore, the pH of the 0.001 mol dm−3 H2SO4 solution is 2.7.
Question 2 Report
If 11.0g of a gas occupies 5.6 dm3 at s.t.p., calculate its vapour density (1 mole of a gas occupies 22.4 dm3 ).
Answer Details
The problem requires calculating the **vapor density** of the gas. Vapor density is defined as the mass of a certain volume of a gas compared to the mass of an equal volume of hydrogen, where the hydrogen standard is 2 g/mol (as the molecular weight of hydrogen gas, H₂, is 2).
Here's a step-by-step explanation:
The calculated vapor density of the gas is 22.
Question 3 Report
Calculate the mass of Magnesium that will be liberated from its salt by the same quantity of electricity that liberated 16.0 g of Silver.
[Mg = 24.0, Ag = 108 ]
Answer Details
To solve this problem, we must consider the concept of electrochemistry and Faraday's laws of electrolysis. These laws are crucial for determining the mass of a substance liberated during electrolysis.
Faraday's first law states that the mass of a substance liberated is directly proportional to the quantity of electricity that passes through the electrolyte. The mass can be calculated using the formula:
m = (Q * M) / (n * F)
Where:
For silver (Ag), the chemical reaction at the cathode is:
Ag⁺ + e⁻ → Ag
This shows that **1 mole of electrons** is required to discharge **1 mole** of silver ions.
For magnesium (Mg), the chemical reaction at the cathode is:
Mg²⁺ + 2e⁻ → Mg
This means that **2 moles of electrons** are required to discharge **1 mole** of magnesium ions.
Given:
First, find the number of moles of Ag liberated:
Number of moles of Ag = 16 g / 108 g/mol = 0.1481 mol
The same quantity of electricity will be used to liberate an equivalent in moles of electrons for Mg.
0.1481 moles of Ag require 0.1481 moles of electrons, equivalent to:
0.1481 moles of electrons for Mg. Since Mg requires 2 moles of electrons for 1 mole of Mg:
Number of moles of Mg = 0.1481 / 2 = 0.07405 mol
Finally, calculate the mass of Mg liberated:
m = 0.07405 mol * 24 g/mol = 1.7772 g
Rounding this to the closest answer provided:
The mass of magnesium that will be liberated is approximately **1.78 g**.
Question 4 Report
Esterification reaction is analogous to
Answer Details
The **esterification reaction** is analogous to a **condensation reaction**. In chemistry, a **condensation reaction** is a type of chemical reaction where two molecules or functional groups combine to form a larger molecule, with the simultaneous loss of a small molecule, usually water. **Esterification** specifically involves the reaction between an acid (often a carboxylic acid) and an alcohol, resulting in the formation of an **ester** and the release of a molecule of water.
To explain this further, in an esterification reaction:
Conversely, the other types of reactions you've mentioned have different mechanisms:
Therefore, given the nature of how molecules join and release water, it's clear that the **esterification reaction** is analogous to a **condensation reaction**.
Question 5 Report
The amount of Faraday required to discharge 4.5 moles of Al3+ is
Answer Details
To determine the amount of Faraday required to discharge 4.5 moles of Al3+ ions, it is essential to understand Faraday's laws of electrolysis and the concept of moles in chemistry.
When discharging Al3+ ions to form aluminum metal (Al), the reduction half-reaction involved is:
Al3+ + 3e- → Al
From this equation, it can be seen that 3 moles of electrons (e-) are required to discharge 1 mole of Al3+ ions to form 1 mole of aluminum metal.
A Faraday is the amount of electric charge carried by one mole of electrons. Therefore, 1 Faraday corresponds to the charge needed to discharge 1 mole of electrons.
Now, to discharge 4.5 moles of Al3+, we need:
4.5 moles of Al3+ × 3 moles of electrons (e-)/mole of Al3+ = 13.5 moles of electrons
Since each Faraday discharges 1 mole of electrons, 13.5 moles of electrons correspond to 13.5 Faradays of charge.
Hence, the amount of Faraday required to discharge 4.5 moles of Al3+ ions is 13.5 Faradays.
Question 6 Report
Na2 X ⇌ 2Na+ + X2−
The bond between Na and X is likely to be
Answer Details
The bond between Na and X is most likely to be ionic. Let's break this down simply:
In the equation provided:
Na2X ⇌ 2Na+ + X2−
The sodium (Na) atoms become positively charged ions (Na+), while X becomes a negatively charged ion (X2−). This change in charge occurs because sodium atoms donate electrons to the X atom. The donation of electrons by sodium to X indicates a transfer of electrons, which is a hallmark of an ionic bond.
In an ionic bond, electrons are transferred from one atom to another, resulting in a positively charged ion and a negatively charged ion. These oppositely charged ions attract each other, forming a strong ionic bond.
In summary, since sodium (Na) donates electrons to X forming ions, the bond between Na and X is most likely to be ionic.
Question 7 Report
The table above shows the formulae of some ions. In which of these compounds is the formula not correct?
Answer Details
To assess the correctness of the chemical formulae for the given compounds, let's break down each compound:
Aluminium Tetraoxosulphate(VI), Al2(SO4)3:
Aluminium ion is denoted as Al3+, and the sulphate ion is SO42-. To balance the charges between the positive and negative ions:
2 x (+3) from aluminium ions = +6
3 x (-2) from sulphate ions = -6
Thus, the charges balance out, making the formula correct.
Calcium Trioxonitrate(V), Ca(NO3)2:
Calcium ion is Ca2+, and the nitrate ion is NO3-. To balance the charges:
1 x (+2) from calcium ion = +2
2 x (-1) from nitrate ions = -2
The charges balance out, therefore, this formula is also correct.
Iron(III) Bromide, Fe3Br:
Iron(III) ion is Fe3+, and bromide ion is Br-. Each iron ion would pair with three bromide ions to balance the charges:
FeBr3, where:
1 x (+3) from iron = +3
3 x (-1) from bromide = -3
The charges balance out in the correct formula which should be FeBr3, making the given formula Fe3Br incorrect.
Potassium Sulphide, K2S:
Potassium ion is K+, and sulphide ion is S2-. To balance the charges:
2 x (+1) from potassium ions = +2
1 x (-2) from sulphide ion = -2
The charges balance out, making this formula correct.
Therefore, the compound with the incorrect formula is Iron(III) Bromide where the proper chemical formula should be FeBr3, not Fe3Br.
Question 8 Report
23892 U + 10 n → 23992 U
The process above produces
Answer Details
The process described appears to depict a nuclear reaction involving a nuclear transmutation. Let's break down the process:
1. The starting element is initially denoted as "23892", which represents Uranium-238. In nuclear notation, "23892" indicates an atomic mass number of 238 and an atomic number of 92.
2. The next step so happens with the element "238"; however, the numbers remain: "92" indicates that the atomic number is unchanged, suggesting no change in the element. This often means a step in between of hypothetical notation.
3. Then there's the occurrence of adding a "U + 10", which again leaves the original atomic number "92".
4. In subsequent steps, it seems that the number "n" transitions to become "23992". The mass number has increased by one unit, turning the initial isotope into "23992", which represents Uranium-239.
The key point here is the transition from Uranium-238 to Uranium-239, which typically happens through the process of a neutron absorption in which a neutron is added, resulting in a change of the mass number. Such a process often leads to the creation of a radioactive isotope.
Therefore, the process described is indicative of producing a radioactive isotope, specifically Uranium-239.
Question 9 Report
What method is suitable for the separation of gases present in air?
Answer Details
The suitable method for the separation of gases present in air is the fractional distillation of liquid air. This method is used due to the differing boiling points of the gases present in the air. Let me explain this in simple terms:
Air is a mixture of different gases, primarily nitrogen, oxygen, and argon, along with small amounts of other gases like carbon dioxide, neon, and krypton. Each of these gases turns into a liquid at different temperatures.
The process begins by cooling the air until it becomes a liquid. This is done at very low temperatures (around -200 degrees Celsius). Once the air is in liquid form, it is slowly warmed up in a distillation column. As it heats up, each gas boils off or evaporates at its respective boiling point and can be collected separately.
For example, nitrogen, which has a boiling point of about -196 degrees Celsius, will evaporate first and can be collected at the top of the distillation column. Following nitrogen, oxygen will evaporate at its boiling point of around -183 degrees Celsius. Finally, argon and other gases will do so at their respective temperatures.
In summary, fractional distillation of liquid air is effective because it takes advantage of the different boiling points to separate each gas from the air mixture.
Question 10 Report
What is the vapour density of 560cm3 of a gas that weighs 0.4g at s.t.p?
[Molar Volume of gas at s.t.p = 22.4 dm3 ]
Answer Details
To find the vapour density of a gas, you can use the formula:
Vapour density = (Molar mass of gas) / 2
However, first, we need to determine the molar mass of the gas. One can find the molar mass using the given data:
We know that at standard temperature and pressure (s.t.p.), 1 mole of any gas occupies 22.4 dm3. We need to convert the volume from cm3 to dm3 because the molar volume is given in dm3:
560 cm3 = 0.560 dm3
Now, let's find the number of moles in 0.560 dm3:
The number of moles (n) = Volume of gas (dm3) / Molar volume at s.t.p. (dm3/mol)
n = 0.560 dm3 / 22.4 dm3/mol
n = 0.025 moles
Given that the mass of the gas is 0.4 grams, we can find the molar mass by using the relation:
Molar Mass = Mass / Number of Moles
Molar Mass = 0.4 g / 0.025 moles
Molar Mass = 16 g/mol
Now that we have the molar mass, we can find the vapour density:
Vapour density = Molar mass / 2
Vapour density = 16 g/mol / 2
Vapour density = 8.0
Hence, the vapour density of the gas is 8.0.
Question 11 Report
Answer Details
When a strong acid reacts with a strong base, the result is the formation of a neutral salt. This reaction is a part of a chemical process known as neutralization.
Let's break it down further:
During a neutralization reaction, the hydrogen ions (H⁺) from the acid combine with the hydroxide ions (OH⁻) from the base to form water (H₂O). Meanwhile, the remaining ions (for example, Na⁺ from NaOH and Cl⁻ from HCl) come together to form a compound known as a salt. This salt does not affect the acidity or basicity of the solution, hence it is considered neutral.
Therefore, the salt formed in such a reaction is a neutral salt, which is what is referred to as a normal salt in the options provided.
Question 12 Report
An organic compound contains 53.1% Carbon, 6.2% Hydrogen, 12.4% Nitrogen, and 28.3% Oxygen by mass. What is the molecular formula of the compound if its vapour density is 56.5? [ C =12, H = 1, N = 14, O = 16].
Answer Details
To find the molecular formula of the compound, follow these steps:
1. Determine the Empirical Formula:
Start by assuming you have 100 grams of the compound. This means you have:
Now, convert these masses to moles using their atomic masses (C = 12, H = 1, N = 14, O = 16):
Next, divide each by the smallest number of moles to get the simplest ratio:
This gives us the empirical formula: C5H7NO2.
2. Determine the Molecular Formula:
The molecular formula is a multiple of the empirical formula. To determine this multiple, we need to find the empirical formula mass and compare it with the molar mass derived from the given vapor density.
Calculate the empirical formula mass:
The molar mass can be calculated from the vapor density:
Now, find the ratio of the molar mass to the empirical formula mass:
This ratio is approximately 1, indicating the molecular formula is the same as the empirical formula. Since empirical formulas typically should perfectly match the atomic proportions we derive from experiments, our calculations regarding the assumptions on the vapour and empirical formula mass remains our best match.
Therefore, the molecular formula is C5H7NO2.
Question 13 Report
The volume in cm3 of a 0.12 moldm−3 HCl required to completely neutralize a 20cm3 of 0.20 moldm−3 of NaOH is
Answer Details
To find the volume of HCl that is required to completely neutralize the NaOH solution, we need to use the concept of a neutralization reaction. A neutralization reaction occurs when an acid and a base react to form water and a salt, thus neutralizing each other.
In this particular reaction, the balanced chemical equation is:
HCl + NaOH → NaCl + H2O
Here, the equation tells us that one mole of HCl reacts with one mole of NaOH. Therefore, the molar ratio of HCl to NaOH is 1:1.
First, let's determine the number of moles of NaOH present in 20 cm3 solution:
Number of moles of NaOH = Concentration (mol/dm3) × Volume (dm3)
= 0.20 mol/dm3 × 20 cm3 × (1 dm3 / 1000 cm3)
= 0.20 × 0.020
= 0.004 moles
Since the reaction is in a 1:1 ratio, the number of moles of HCl required is also 0.004 moles.
Now, let's determine the volume of HCl solution required:
Volume of HCl (dm3) = Number of moles / Concentration
= 0.004 moles / 0.12 mol/dm3
= 0.03333 dm3
Convert this volume from dm3 to cm3:
0.03333 dm3 × 1000 cm3 / dm3 = 33.33 cm3
Therefore, the volume of HCl required is 33.33 cm3.
Question 14 Report
A factor that does not affect the rate of a chemical reaction is
Answer Details
In evaluating the factors that affect the rate of a chemical reaction, we can look at each of the possible influences: surface area, temperature, volume, and catalyst.
Surface Area: When you increase the surface area of reactants, it allows more particles to collide with each other per unit of time, which in turn increases the rate of reaction. Imagine smaller particles like powders reacting faster than larger chunks because they have a greater surface exposed to the other reactants.
Temperature: Increasing the temperature usually increases the rate of reaction. Higher temperatures cause particles to move faster, increasing the energy of collisions, and therefore increasing the chance of successful reactions.
Catalyst: A catalyst is a substance that increases the rate of a chemical reaction without being consumed by it. It lowers the activation energy needed for the reaction to occur, thus allowing it to proceed faster.
Volume: The volume of the container or the amount of space in which a reaction occurs generally does not directly affect the rate of the reaction. While changing the volume can alter pressure or concentration in gaseous reactions, which in turn affects the rate, the volume itself is not a direct factor affecting reaction rate.
Therefore, the factor that does not directly affect the rate of a chemical reaction is volume. It indirectly affects reaction rates by altering concentration or pressure in certain reaction conditions, but it is not a direct influencing factor on its own.
Question 15 Report
Benzene formed nitrobenzene at temperature of 600 C when it reacts with mixture of concentrated trioxonitrate(V) acid and concentrated
Answer Details
The reaction described is the nitration of benzene to form nitrobenzene. This is an example of an electrophilic aromatic substitution reaction. **Nitration** involves replacing a hydrogen atom on a benzene ring with a nitro group (NO2). This reaction requires a nitrating mixture composed of concentrated nitric acid (trioxonitrate(V) acid) and concentrated sulfuric acid (tetraoxosulphate(VI) acid). Let me explain why:
Nitration is typically carried out using a mixture of **concentrated nitric acid and concentrated sulfuric acid** at a temperature of around **60°C**. The role of sulfuric acid in this mixture is to act as a catalyst and a dehydrating agent. It helps generate the nitronium ion (NO2+), which is the active electrophile that attacks the benzene ring.
Here's a simplified mechanism for this reaction:
None of the other options listed (hydrochloric acid, phosphoric acid, and hydrogen iodide) contain the necessary combination of properties to generate the nitronium ion and facilitate the nitration of benzene.
Therefore, the correct mixture to carry out the nitration of benzene, forming nitrobenzene at a temperature of 60°C, is a combination of **concentrated nitric acid and concentrated sulfuric acid (tetraoxosulphate(VI) acid)**.
Question 16 Report
The element which can combine with oxygen to form an acid anhydride of the form XO2 is
Answer Details
An Acid anhydride can be defined as a non-metal oxide which forms an acidic solution when reacted with water.
Sulphur is the element that can combine with oxygen to form an acid anhydride of the form XO2 .
An acid oxide is a compound that forms an acid when it reacts with water. Non-metals in groups 4–7 form acidic oxides.
Question 17 Report
Biodegradable pollutants are not safe in water systems because they can cause
Answer Details
Biodegradable pollutants are substances that can be broken down by natural processes and microorganisms. However, when they are present in water systems, they can lead to several environmental and health issues. One of the main concerns is their potential to cause ill health. Here's why:
When biodegradable pollutants such as organic waste are introduced into water bodies, they are decomposed by bacteria and other microorganisms. This process consumes dissolved oxygen in the water. As the oxygen levels decrease, aquatic life such as fish and plants may suffer or die due to a lack of oxygen, disrupting the entire aquatic ecosystem.
This situation is known as eutrophication, which can lead to the excessive growth of algae, commonly referred to as algal blooms. These blooms often produce toxins that are harmful to both aquatic life and humans. Furthermore, when this polluted water is used for drinking, agriculture, or recreational purposes, it poses serious health risks to humans. These risks may include gastrointestinal infections, neurological disorders, and skin problems.
In addition, as the pollutants decompose, foul smells may be released, which can affect air quality in the vicinity, although the primary concern with biodegradable pollutants in water is related to how they affect water quality and health.
Therefore, it is crucial to properly manage and treat biodegradable pollutants before they enter water systems to prevent these health hazards. Failure to do so can result in significant environmental and health issues.
Question 18 Report
What would be the order of the electrolytic cell in an industry intending the production of silver plated spoons?
Answer Details
In the process of silver plating a spoon using an electrolytic cell, the correct configuration involves the following:
Cathode: The object to be plated, which in this case is the spoon. In an electrolytic cell, the cathode is where the reduction reaction occurs, and it is the surface on which the metal ions are deposited.
Anode: A rod made of silver. The anode is where oxidation occurs, meaning the silver rod will dissolve into the solution in the form of silver ions. These ions then move towards the cathode to be deposited as a thin layer on the spoon.
Electrolyte: A solution that contains a soluble silver salt (such as silver nitrate, AgNO3). The silver ions from this salt help in the process of transferring the silver from the anode to the cathode.
Thus, the proper order for silver plating a spoon in an electrolytic cell for industrial production is: "Cathode is the spoon; anode is a silver rod; electrolyte is a soluble silver salt."
Question 19 Report
How much of 5g of radioactive element whose half life is 50days remains after 200days?
Answer Details
To determine how much of a radioactive element remains after a certain period, we use the concept of half-life. The half-life of a substance is the time it takes for half of the initial amount of a radioactive element to decay. In this example, the half-life is given as 50 days.
We want to know how much of a 5g sample remains after 200 days. First, calculate how many half-lives occur in 200 days:
Number of half-lives = Total time elapsed / Half-life = 200 days / 50 days = 4 half-lives
Next, we calculate the remaining amount after each half-life period:
After 200 days, 0.31g of the radioactive element remains.
Question 20 Report
Determine the half-life of a first order reaction with constant 4.5 x 10−3 sec−1 .
Answer Details
To determine the half-life of a first-order reaction, you can use the formula:
Half-life (\(t_{1/2}\)) = \(\frac{0.693}{k}\)
where \(k\) is the rate constant of the reaction. For the given problem, the rate constant (\(k\)) is 4.5 x 10-3 s-1.
Substituting the value of \(k\) into the formula, we have:
\(t_{1/2} = \frac{0.693}{4.5 \times 10^{-3}}\)
Perform the division:
\(t_{1/2} = \frac{0.693}{4.5 \times 10^{-3}} \approx 154\) s
Therefore, the half-life of the reaction is 154 seconds.
Question 21 Report
Answer Details
In the Contact Process, the catalyst used for the conversion of sulphur(IV) oxide (SO2) to sulphur(VI) oxide (SO3) is vanadium(V) oxide, also chemically represented as V2O5. This catalyst is preferred because it is more cost-effective and significantly more durable under reaction conditions than other catalysts such as platinum. Moreover, while platinum is also an effective catalyst, it is prone to poisoning by impurities that may be present in the reaction mixture. Vanadium(V) oxide, on the other hand, offers a better balance of efficiency, cost, and durability, making it the catalyst of choice in industrial applications of the Contact Process.
Question 22 Report
Determine the empirical formula of an oxide of sulphur containing 60% of oxygen
[S = 32, O = 16 ]
Answer Details
To determine the empirical formula of an oxide of sulfur containing 60% of oxygen, we have to understand the concept of empirical formulas, which give the simplest whole-number ratio of atoms of each element in a compound.
Step 1: Assume 100g of the compound. In 100g of the compound:
Step 2: Convert masses to moles. Use the molar mass to find moles.
Step 3: Determine the simplest whole-number ratio.
To find the ratio, divide each mole value by the smallest number of moles calculated:
The simplest ratio of S:O is 1:3.
Thus, the empirical formula of the oxide is SO3.
Question 23 Report
The compound of Copper used as a fungicide is
Answer Details
The compound of copper that is commonly used as a fungicide is **Copper(II) sulfate**, which is represented by the chemical formula **CuSO4**.
Let's break this down for better understanding:
The other compounds listed do not serve as common fungicides:
Therefore, the correct and widely used copper compound as a fungicide is Copper(II) sulfate (CuSO4).
Question 24 Report
The stability of atomic nucleus is determined by ratio of
Answer Details
The stability of an atomic nucleus is primarily determined by the neutron/proton ratio. This refers to the number of neutrons in relation to the number of protons within the nucleus. Let's break down why this ratio is crucial for nuclear stability:
The right balance between the number of neutrons and protons helps in achieving nuclear stability.
An imbalance in this ratio often results in an unstable nucleus, leading to radioactive decay as the nucleus attempts to reach a more stable form. This is why the neutron/proton ratio is a fundamental factor in the stability of the atomic nucleus.
Question 25 Report
Fog is a colloid in which
Answer Details
**Fog** is a type of colloid, which is a mixture where very small particles of one substance are evenly distributed throughout another substance. In the case of fog, it consists of tiny **liquid droplets** that are dispersed in a **gas**. Specifically, these are tiny droplets of water suspended in the air. When you walk through fog, you are essentially walking through air that contains these minute water droplets.
Thus, the correct description of fog as a colloid is that it consists of **liquid particles dispersed in a gas medium**. The liquid here is water, and the gas is air.
Question 26 Report
The number of geometrical isomers of butene are
Answer Details
To understand the geometrical isomers of butene, we need to explore its structure. Butene has four carbon atoms, and there are various structural forms that butene can take. These structural forms include linear or branched chains, with a double bond present between carbon atoms.
Geometric isomerism is a type of stereoisomerism. It occurs due to restricted rotation around the double bond, leading to different spatial arrangements of groups attached to the carbons forming the double bond. The geometric isomerism primarily occurs in alkenes like butene where the positions of substituents can vary.
Let's consider the different types of butene, focusing on the possibility of geometrical isomerism:
In conclusion, for butene, only 2-butene has geometrical isomers (cis and trans). Therefore, the number of geometric isomers is 2.
Question 27 Report
Hydrogen chloride gas and ammonia can be used to demonstrate the fountain experiment because they are
Answer Details
In the fountain experiment, hydrogen chloride gas (HCl) and ammonia (NH₃) are used to demonstrate the creation of a visible 'fountain' due to their high solubility in water. Here's a simple explanation:
When hydrogen chloride gas and ammonia gas come into contact with water, they dissolve very quickly and react vigorously. This is because both gases are very soluble in water. As they dissolve, a vacuum-like pressure is created inside the container where the gases are held, pulling water up into it, creating the 'fountain' effect.
Moreover, when HCl and NH₃ gases react with each other, they form a white, solid product known as ammonium chloride (NH₄Cl), which is a demonstration of how both gases can effectively dissolve and react with not just water, but also with each other.
Thus, the ability of these gases to create a fountain effect is primarily because they are very soluble in water, which allows them to dissolve rapidly and create the pressure differential necessary for the water to be pulled into the container dynamically.
Question 28 Report
127g of sodium chloride was dissolved in 1.0dm3 of distilled water at 250 C . Determine the solubility in moldm−3 of sodium chloride at that temperature. [Na = 23, Cl = 35.5]
Answer Details
To determine the solubility of sodium chloride (NaCl) in mol/dm3 at the given temperature, you need to first calculate the number of moles of NaCl dissolved.
Step 1: Calculate the molar mass of NaCl.
The molar mass of a compound is found by adding the atomic masses of its constituent elements:
- Sodium (Na) has an atomic mass of 23.
- Chlorine (Cl) has an atomic mass of 35.5.
Thus, the molar mass of NaCl = 23 + 35.5 = 58.5 g/mol.
Step 2: Calculate the number of moles of NaCl.
The formula to calculate moles is:
Number of moles = Mass (g) / Molar mass (g/mol)
Given mass of NaCl = 127 g,
Number of moles = 127 g / 58.5 g/mol ≈ 2.17 mol
Step 3: Calculate the solubility in mol/dm3.
Since the sodium chloride is dissolved in 1.0 dm3 of water, the solubility is the same as the number of moles, since the volume is already 1.0 dm3.
Therefore, the solubility of sodium chloride at that temperature is 2.17 mol/dm3.
Rounded to the options given, 2.17 mol/dm3 is approximately equal to 2.2 mol/dm3.
Question 29 Report
The difference in molecular mass between an alkene and alkyne with six carbon per mole is
Answer Details
To determine the difference in molecular mass between an alkene and an alkyne, let's first take a look at their general formulas.
Alkene: An alkene is a hydrocarbon with at least one double bond between carbon atoms. For an alkene with six carbon atoms, the general formula is CnH2n. Therefore, for 6 carbon atoms, the molecular formula is C6H12.
Alkyne: An alkyne is a hydrocarbon with at least one triple bond between carbon atoms. For an alkyne with six carbon atoms, the general formula is CnH2n-2. Therefore, for 6 carbon atoms, the molecular formula is C6H10.
Now let's calculate the molecular masses:
Molecular mass of alkene (C6H12):
Molecular mass of alkyne (C6H10):
The **difference** in molecular mass between the alkene and alkyne is **84 g/mol - 82 g/mol** = 2 g/mol.
Question 30 Report
How many isomers has the organic compound represented by the formula C3 H8 O ?
Answer Details
The molecular formula C3H8O represents organic compounds that contain 3 carbon atoms, 8 hydrogen atoms, and 1 oxygen atom. Let's elucidate the possible isomers, which are molecules with the same molecular formula but different structural arrangements.
1. Alcohols: One class of compounds that can form isomers for this formula are alcohols, which include a functional group -OH.
a. Propan-1-ol: This is a straight-chain alcohol where the -OH group is on the first carbon. The structure is as follows:
CH3-CH2-CH2-OH
b. Propan-2-ol: This is another alcohol where the -OH group is on the second carbon, giving it a different structure and properties:
CH3-CH(OH)-CH3
2. Ethers: This is another class of possible isomers, where the oxygen atom is bonded to two alkyl groups.
c. Methoxyethane: Also known as ethyl methyl ether, it has a structure where the oxygen is in a bridge position between a methyl group and an ethyl group:
CH3-O-CH2-CH3
These are the possible structural isomers for this molecular formula. Therefore, the compound C3H8O has three isomers overall:
Thus, the answer is three distinct isomers.
Question 31 Report
The law which states that a pure chemical compound, no matter how it is made, will be made up of the same elements contained in the same proportion by mass is
Answer Details
The law that states a pure chemical compound, no matter how it is made, will be made up of the same elements contained in the same proportion by mass is the law of definite proportion.
To explain this simply, let's consider water as an example. Water is made up of hydrogen and oxygen. According to the law of definite proportion, a sample of pure water taken from anywhere in the world will always contain the same ratio of hydrogen to oxygen by mass. Specifically, water will always have approximately 88.8% oxygen and 11.2% hydrogen by mass.
This is because a chemical compound has a fixed composition, regardless of the process used to create it or the source from which it is derived. The law of definite proportion, also known as the law of constant composition, is fundamental in chemistry because it supports the idea that chemical compounds are composed of elements in specific and fixed ratios. This does not change regardless of how the compound is prepared or where it is found.
Question 32 Report
Sulphur(IV)oxide can be used as a
Answer Details
Sulphur(IV) oxide has many uses including food preservation, refrigeration, laboratory reagent and solvent, sulphuric acid production, fumigant etc.Sulphur(IV) oxide is a good refrigerant because it has a high heat of evaporation and can be easily condensed.
Question 33 Report
The constituent of petroleum fraction used in surfacing road is
Answer Details
Among the options listed, the constituent of petroleum used in surfacing roads is bitumen. Bitumen, also known as asphalt, is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It is the last fraction obtained when crude oil is distilled and is often left over after the lighter components are extracted.
Reasons why bitumen is used for road surfacing:
Due to these properties, bitumen is extensively used in road construction and surfacing, ensuring roads are durable, smooth, and safe for travel.
Question 34 Report
Hydrochloric acid is not suitable in the preparation of ethanoic acid because it
Answer Details
Hydrochloric acid is not suitable for preparing ethanoic acid because it is too volatile.Being too volatile, means it has a low boiling point and is easily evaporated. Thus, HCl is not suitable because it cannot carry out the oxidation process required to convert alcohols into acids like ethanoic acid.
Ethanoic acid, also known as acetic acid, is a weak acid that doesn't fully dissociate in water, while hydrochloric acid is a strong acid that dissociates almost completely.
Question 35 Report
Alkanoates are naturally found in
Answer Details
Alkanoates, also known as fatty acid esters, are primarily found in lipids. Lipids are a broad group of naturally occurring molecules that include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), and others. One of the main components of lipids is fatty acids and their derivatives, such as alkanoates.
To be more specific, alkanoates can be found in the form of triglycerides, which are the main constituents of body fat in humans and animals, as well as vegetable fat. Triglycerides are composed of glycerol bound to three fatty acids, and these fatty acids are usually present in the form of alkanoates.
Unlike proteins and rubber, which are made up of amino acids and polymers of isoprene respectively, lipids are the primary class of biomolecules where these alkanoate compounds can be found in significant amounts.
Question 36 Report
Solubility curve is a plot of solubility against
Answer Details
A solubility curve is a plot of solubility against temperature. Let me explain in a simple way:
Solubility refers to the amount of a substance (solute) that can dissolve in a given quantity of solvent to form a homogeneous solution at a specified condition. The most common factor that affects solubility is the temperature.
Here's why a solubility curve typically involves temperature:
Therefore, plotting solubility against temperature in a solubility curve allows us to visualize and understand how solubility changes with variations in temperature.
Question 37 Report
An example of a physical change is
Answer Details
An example of a physical change is the boiling of water. Let me explain why this is considered a physical change:
A physical change is a change where the substances involved do not change their chemical composition, meaning they remain the same substance, just in a different form or appearance. In the case of boiling water, when water is heated to its boiling point, it changes from a liquid to a gas (steam), but it is still comprised of water molecules (H2O). The change is reversible, so the gas can condense back into liquid water without any new substance being formed.
On the other hand:
Thus, boiling water is an excellent example of a physical change as it involves only the change in the state of matter without altering the substance's identity.
Question 38 Report
When n = 3, the quantum number of an element is
Answer Details
Quantum numbers are a set of numbers that describe the position and energy of an electron in an atom.
When the quantum number is equal to 3, the possible values for the azimuthal quantum number are 0, 1, and 2:
The three possible sub-shells when n=3 are 3s, 3p, and 3d.
Question 39 Report
In the treatment of water for municipal supply, chlorine is used to
Answer Details
In the treatment of water for municipal supply, chlorine is used to kill germs. This process is known as chlorination. Chlorine is a very effective disinfectant and is used to eliminate harmful microorganisms such as bacteria, viruses, and protozoans that may be present in the water. By doing so, chlorine helps to ensure that the water is safe for human consumption and protects public health by preventing waterborne diseases. It is important to note that **chlorine is not used to prevent tooth decay, prevent goitre, or to remove colour or odour** in water treatment for municipal supply.
Question 40 Report
Cx Hy O + 5O2 → 4CO2 + 4H2 O
Cx Hy O in the equation is
Answer Details
Cx Hy O + 5O2 → 4CO2 + 4H2 O
On balancing the equation, we should have
X = 4 , y = 8 and O = 2 ⇒ C4 H8 O2
Since 2 is a common factor to the three atoms, we can divide through by 2, considering the fact that that formula is not in the option.
We finally have C2 H4 O
Would you like to proceed with this action?