Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
Isotopes of an element have
Answer Details
Isotopes of an element have the same number of protons (which defines the element) but may have different numbers of neutrons. Since atoms are electrically neutral, the number of protons must equal the number of electrons in an atom.
Question 2 Report
Which of the following is a unique property of water compared to other liquids?
Answer Details
A unique property of water compared to other liquids is that it expands when freezing.
When most substances freeze, the molecules become more closely packed together and the substance contracts or becomes denser. However, water is different. As it cools below 4 degrees Celsius, the water molecules start forming a crystal lattice structure. This structure has a more open arrangement, causing the water molecules to move further apart and take up more space. This expansion causes ice to be less dense than liquid water. This expansion is why ice floats in liquid water. If water did not expand when freezing, ice would sink and bodies of water like lakes and oceans would freeze from the bottom up, endangering aquatic life. The expansion of water when freezing is also important for another reason. It helps prevent the environment from experiencing rapid temperature fluctuations. When the temperature drops, the top layer of a body of water freezes, acting as an insulating layer for the water below, and protecting aquatic life during cold winter months. Overall, the expansion of water when freezing is a unique property of water that has significant implications for the survival of organisms and the stability of ecosystems.Question 3 Report
What is the principal ore of iron, from which iron is extracted?
Answer Details
Hematite (Fe2 O3 ) is the principal ore of iron and is widely mined for the extraction of iron metal.
Question 4 Report
Which of the following methods is commonly used to remove suspended impurities from water?
Answer Details
The Filtration method is commonly used to remove suspended impurities from water.
When water is obtained from natural sources such as rivers, lakes, or groundwater, it often contains various suspended impurities. These impurities can include particles like sand, clay, silt, and organic matter. These impurities make the water cloudy or turbid and can also affect its taste and smell.
Filtration is the process of passing water through a porous material or medium to separate and remove the suspended impurities. The porous material used in filtration is typically sand, activated carbon, or a combination of different layers of materials.
As the water flows through the filtration medium, the suspended impurities get trapped and retained in the tiny pores or gaps within the material. This effectively removes the impurities from the water, resulting in clearer and cleaner water.
Filtration is a widely used method in water treatment plants, households, and industries to improve the quality of water. It is an essential step in the treatment of drinking water to ensure that it is safe for consumption.
Other methods mentioned, such as Fluoridation, Chlorination, and Distillation, serve different purposes in water treatment:
- Fluoridation: This process involves adding a controlled amount of fluoride to drinking water to help prevent tooth decay. It is not primarily used to remove suspended impurities from water. - Chlorination: This process involves adding chlorine to water to disinfect it and kill harmful microorganisms. While chlorination can help remove some suspended impurities, its main purpose is to disinfect water. - Distillation: This method involves heating water to create steam, which is then cooled and collected as purified water. Distillation is effective in removing impurities but is less commonly used on a large scale due to its energy-intensive nature.In conclusion, Filtration is the most commonly used method to remove suspended impurities from water, ensuring that it is clear, clean, and suitable for various applications.
Question 5 Report
Which of the following methods can be used to remove temporary hardness from water?
Answer Details
One method that can be used to remove temporary hardness from water is boiling.
When water is heated and boiled, it causes the dissolved minerals that contribute to temporary hardness, such as calcium and magnesium bicarbonates, to precipitate out of the water. These precipitates settle at the bottom of the container or can be filtered out, resulting in the removal of temporary hardness.
Filtration can also help in removing temporary hardness from water. This method involves passing water through a filter that is designed to trap and remove the dissolved mineral ions responsible for hardness. The filter can be made of materials like activated carbon or ion-exchange resin, which have the ability to bind with calcium and magnesium ions and remove them from the water.
Distillation is another effective method for removing temporary hardness from water. Distillation involves heating the water to boiling point, and then collecting and condensing the steam to obtain pure water. As the water is heated and evaporates, the dissolved minerals are left behind, resulting in the separation of the excess minerals and the production of softened water.
Chlorination is not a method that can be used to remove temporary hardness from water. Chlorination refers to the process of adding chlorine or chlorine compounds to water to disinfect and kill harmful microorganisms. It does not have any direct effect on the mineral content of the water, and therefore cannot remove temporary hardness.
In summary, methods such as boiling, filtration, and distillation can be used to remove temporary hardness from water, while chlorination does not have any impact on hardness removal.
Question 6 Report
Which halogen is a gas at room temperature and is pale yellow in color?
Answer Details
Fluorine is a halogen that is a gas at room temperature and is pale yellow in color. Halogens are a group in the periodic table consisting of five chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At). Among these, only Fluorine and Chlorine are gases at room temperature, but Chlorine is greenish-yellow, not pale yellow.
Question 7 Report
What is the solubility product constant (Ksp) used for?
Answer Details
The solubility product constant (Ksp) is used to calculate the solubility of a solute in a given solvent. It helps us understand how much of a particular compound can dissolve in a specific solvent at a given temperature. : "To measure the total mass of a solute that can dissolve in a solvent" - This option is incorrect. The solubility product constant does not directly measure the mass of a solute that can dissolve. It calculates the maximum amount of solute that can dissolve in the solvent. : "To determine the concentration of a solute in a saturated solution" - This option is partially correct. The solubility product constant is involved in determining the concentration of a solute in a saturated solution. By knowing the Ksp value and the concentrations of the ions in the saturated solution, we can calculate the solute concentration. : "To calculate the solubility of a solute in a given solvent" - This option is correct. The solubility product constant is used to calculate the solubility of a solute in a given solvent. Solubility refers to the maximum amount of solute that can dissolve in a specific amount of solvent at a given temperature. : "To compare the solubilities of different solutes in the same solvent" - This option is not directly related to the solubility product constant. While Ksp values can be used to indirectly compare the solubilities of different solutes, the primary purpose of Ksp is to calculate solubility, not comparison. In summary, the solubility product constant (Ksp) is mainly used to calculate the solubility of a solute in a given solvent. It helps determine the maximum amount of solute that can dissolve in the solvent at a specific temperature.
Question 8 Report
What is the valency of an element with the electronic configuration 2, 8, 7?
Answer Details
The valency of an element is a measure of its ability to combine with other elements to form compounds. It is determined by the number of electrons an atom can gain, lose, or share in order to achieve a stable electronic configuration.
In the given electronic configuration 2, 8, 7, the element has a total of 17 electrons. In order to achieve a stable electronic configuration, the element needs to either gain one electron to complete its outermost shell or lose seven electrons to empty its outermost shell.
The valency of an element is typically determined by the number of electrons in its outermost shell, also known as the valence shell. In this case, the element has 7 electrons in its valence shell, which means it needs to gain one electron to achieve a stable configuration.
Therefore, the valency of the element with the electronic configuration 2, 8, 7 is 1, as it needs to gain one electron to achieve stability.
Question 9 Report
How many pi (π
) bonds are there in an alkene with six carbon atoms?
Answer Details
In an alkene with six carbon atoms, there are 5 sigma (σ) bonds (single bonds) between the carbon atoms. Additionally, there are 4 pi (π
) bonds associated with the double bonds between the carbon atoms.
Question 10 Report
Which group does calcium belong to in the periodic table?
Answer Details
Calcium belongs to the alkaline earth metals group in the periodic table.
The periodic table is a chart that organizes elements based on their properties and atomic number. It consists of rows, called periods, and columns, called groups or families.
The alkaline earth metals group is found in the second column of the periodic table, specifically group 2. This group includes elements such as beryllium, magnesium, calcium, strontium, and barium.
So, why does calcium belong to the alkaline earth metals group? It's because of its characteristics and behavior.
Firstly, alkaline earth metals are highly reactive and relatively soft metals. Calcium, like other elements in this group, readily loses its two outermost electrons to form a positive ion with a +2 charge.
Secondly, alkaline earth metals have similar chemical properties. They all react with water to form alkaline solutions and with non-metals to form compounds.
Lastly, calcium is found abundantly in Earth's crust, mainly as calcium carbonate in limestone and chalk. It is an essential element for living organisms and is involved in various biological processes, such as muscle contraction and bone formation.
In conclusion, calcium belongs to the alkaline earth metals group in the periodic table due to its reactivity, similar chemical properties to other group members, and abundance on Earth.
Question 11 Report
The heat of reaction can be determined experimentally using a device called a
Answer Details
The device used to determine the heat of reaction experimentally is called a calorimeter.
A calorimeter is a tool designed to measure the amount of heat absorbed or released during a chemical reaction or a physical process. It is commonly used in chemistry laboratories to determine the heat changes associated with chemical reactions, such as the heat of reaction.
The principle behind a calorimeter is that the heat released or absorbed by a reaction is transferred to the surrounding environment, which includes the substances inside the calorimeter. By measuring the temperature change of the substances inside the calorimeter, the heat of reaction can be determined.
A simple calorimeter consists of a container, often made of a good insulator, such as Styrofoam, to minimize heat exchange with the surroundings. Inside the container, the reactants are mixed, and the temperature change is monitored with a thermometer.
During a chemical reaction, if heat is absorbed from the surroundings, the temperature inside the calorimeter will decrease. Conversely, if heat is released to the surroundings, the temperature inside the calorimeter will increase. By measuring the temperature change and knowing the specific heat capacity of the substances involved, the heat of reaction can be calculated.
Therefore, a calorimeter is essential for determining the heat of reaction experimentally, allowing scientists to understand the energy changes associated with chemical reactions.
Question 12 Report
Which of the following is a common property of non-metals?
Answer Details
A common property of non-metals is that they tend to gain electrons in chemical reactions.
Non-metals are a group of elements on the periodic table that have certain characteristics in common. One of these characteristics is their tendency to gain electrons during chemical reactions.
Electrons are negatively charged particles that orbit around the nucleus of an atom. Non-metals have a higher attraction for electrons compared to metals. This means that when non-metals come into contact with other elements, they have a greater likelihood of taking electrons from those elements.
This process of gaining electrons is called electron gainor electron capture. When non-metals gain electrons, they become negatively charged ions, also known as anions. This electron gain gives them stability and helps them achieve a full outer electron shell, similar to the noble gases.
The tendency of non-metals to gain electrons is an essential characteristic that distinguishes them from metals. Metals, on the other hand, tend to lose electrons during chemical reactions, leading to the formation of positively charged ions called cations.
Therefore, the property that matches the description is "Tend to gain electrons in chemical reactions," making it a common characteristic of non-metals.
Question 13 Report
Which of the following metals is commonly alloyed with copper to make brass?
Answer Details
The metal that is commonly alloyed with copper to make brass is zinc. Brass is an alloy made by combining copper and zinc in varying proportions.
Alloys are materials made by mixing two or more metals together. By combining copper and zinc, we create brass, which has different properties than copper or zinc alone.
Zinc is chosen as the common metal to alloy with copper because it has a lower melting point and is more affordable compared to other metals like iron, nickel, or aluminum. This makes it easier and cheaper to produce brass.
Brass has many useful properties that make it a popular material for various applications. It has good corrosion resistance, making it suitable for use in plumbing fittings and musical instruments. It is also easily malleable, meaning it can be shaped into different forms without breaking.
In conclusion, zinc is commonly alloyed with copper to make brass due to its lower melting point, affordability, and the desirable properties it imparts to the alloy.
Question 14 Report
When anhydrous cobalt chloride paper is exposed to water, what color change is observed?
Answer Details
When anhydrous cobalt chloride paper is exposed to water, the color change observed is from blue to pink.
Anhydrous cobalt chloride paper is a type of paper that contains cobalt chloride in a dry form. Cobalt chloride is a chemical compound that can exist in both anhydrous (without water) and hydrated (with water) form.
In its anhydrous form, cobalt chloride appears as blue crystals. These crystals do not contain any water molecules. When anhydrous cobalt chloride is exposed to water, it undergoes a chemical reaction called hydration.
During hydration, water molecules are absorbed by the cobalt chloride crystals, resulting in the formation of hydrated cobalt chloride. The hydrated form of cobalt chloride is pink in color.
So, when anhydrous cobalt chloride paper comes into contact with water, the blue crystals of cobalt chloride change into pink crystals of hydrated cobalt chloride. This color change is a clear indication that water is present.
Therefore, the color change observed when anhydrous cobalt chloride paper is exposed to water is from blue to pink.
Question 15 Report
A blue litmus paper turns red when dipped into a solution. What does this indicate about the solution?
Answer Details
The blue litmus paper turning red when dipped into a solution indicates that the solution is acidic.
Litmus paper is a commonly used indicator to determine the acidity or alkalinity of a solution. It undergoes a color change depending on the nature of the solution it is exposed to. Blue litmus paper is specifically used to test for acidity. In an acidic solution, which has a high concentration of hydrogen ions (H+), the blue litmus paper reacts with the hydrogen ions. This reaction causes the litmus paper to change from blue to red. This color change is a clear indication that the solution being tested is acidic in nature. Therefore, in this scenario, since the blue litmus paper turns red when dipped into the solution, it confirms that the solution is acidic. It is important to note that this indicates the nature of the solution and not a fault in the litmus paper itself.Question 16 Report
Which type of chemical combination involves the transfer of electrons from one atom to another, resulting in the formation of oppositely charged ions?
Answer Details
The type of chemical combination that involves the transfer of electrons from one atom to another, resulting in the formation of oppositely charged ions, is ionic bonding.
In an ionic bond, one atom donates electrons to another atom. This happens when one atom has a stronger attraction for electrons than the other. The atom that donates electrons becomes positively charged (known as a cation), while the atom that receives the electrons becomes negatively charged (known as an anion).
The transfer of electrons occurs because atoms want to achieve a stable electron configuration, usually by having a complete outermost electron shell. By transferring electrons, atoms can achieve this stability. The resulting oppositely charged ions are attracted to each other due to the electrostatic force, forming an ionic bond.
For example, in the formation of table salt (sodium chloride), sodium (Na) donates an electron to chlorine (Cl). Sodium becomes a positively charged ion (Na+), and chlorine becomes a negatively charged ion (Cl-). The positive and negative charges attract each other, creating the ionic bond in sodium chloride.
Overall, ionic bonding involves the transfer of electrons, resulting in the formation of oppositely charged ions. This type of chemical combination is an essential concept in understanding various compounds and their properties.
Question 17 Report
Which of the following is a common laboratory indicator for bases?
Answer Details
A laboratory indicator is a substance that changes color in the presence of an acid or a base. It helps us determine the nature of a solution, whether it is acidic or basic.
Out of the given options, Phenolphthalein is a common laboratory indicator for bases.
Phenolphthalein is a colorless compound that turns pink or purple in the presence of a base. It is widely used because it has a clear and distinct color change, making it easy to identify the presence of a base. When a base is added to a solution containing phenolphthalein, the compound undergoes a chemical reaction and changes its structure, resulting in a change in color.
Methyl orange, on the other hand, is a laboratory indicator for acids. It changes color in the presence of an acid but remains unchanged in the presence of a base.
Bromothymol blue is another laboratory indicator commonly used to test for acids and bases. It turns yellow in the presence of an acid and blue in the presence of a base.
Litmus is a natural dye extracted from lichens. It is a general indicator that turns red in the presence of an acid and blue in the presence of a base.
However, out of the options provided, Phenolphthalein is the specific laboratory indicator commonly used to test for bases.
Question 18 Report
Who proposed the planetary model of the atom with electrons orbiting the nucleus?
Answer Details
The correct answer is Niels Bohr. Niels Bohr proposed the planetary model of the atom with electrons orbiting the nucleus. His model was an improvement on the earlier atomic models proposed by J.J. Thomson and Ernest Rutherford. In Bohr's model, electrons exist in specific energy levels or orbits around the nucleus. These energy levels are represented by the electron shells. The electrons occupy the shells closest to the nucleus first, and then fill the outer shells successively. Bohr also introduced the concept of quantized energy in his model. According to his theory, electrons can only exist in certain energy levels and cannot exist in between. When an electron absorbs or emits energy, it jumps between these energy levels. This model provided a better understanding of the stability of atoms and explained aspects such as the spectral lines observed in atomic emission and absorption spectra. In summary, Niels Bohr proposed the planetary model of the atom with electrons orbiting the nucleus, which helped explain the behavior and stability of atoms.
Question 19 Report
Which type of salt is found in antacid medications and is used to relieve heartburn and indigestion?
Answer Details
The type of salt found in antacid medications to relieve heartburn and indigestion is magnesium chloride.
Magnesium chloride is used as an active ingredient in antacids because it has the ability to neutralize excess stomach acid. When you have heartburn or indigestion, it means that there is too much acid in your stomach, causing discomfort and a burning sensation.
Magnesium chloride works by reacting with the excess stomach acid to form magnesium hydroxide. This compound, magnesium hydroxide, is a strong base that can effectively neutralize the acid, reducing the symptoms of heartburn and indigestion.
By taking antacid medications that contain magnesium chloride, you can help to balance the acidity in your stomach and provide relief from the discomfort caused by excess acid.
Question 20 Report
What is the trend for ionization energy across a period in the periodic table?
Answer Details
The trend for ionization energy across a period in the periodic table is that it increases from left to right. Ionization energy is the energy required to remove an electron from an atom or ion. When moving from left to right across a period, the number of protons in the nucleus increases, which means there is a stronger attractive force on the electrons. As a result, it becomes more difficult to remove an electron and the ionization energy increases. Therefore, the correct option is that the ionization energy increases from left to right across a period in the periodic table.
Question 21 Report
At 2.0 atm pressure, the volume of a gas is 4.0 L. If the pressure is reduced to 1.0 atm while keeping the temperature constant, what will be the new volume of the gas?
Answer Details
In this scenario, we have a gas at an initial pressure of 2.0 atm and an initial volume of 4.0 L. We are told that the temperature is constant throughout the process.
The question asks us to determine the new volume of the gas if the pressure is reduced to 1.0 atm. To do this, we can use the Boyle's Law.
Boyle's Law states that if the temperature of a gas remains constant, then the pressure and volume of the gas are inversely proportional. In other words, as the pressure decreases, the volume increases.
Using Boyle's Law, we can set up the following equation:
P1 * V1 = P2 * V2
Where:
P1 = initial pressure
V1 = initial volume
P2 = final pressure
V2 = final volume (what we need to find)
Substituting the given values into the equation, we have:
(2.0 atm) * (4.0 L) = (1.0 atm) * (V2)
Simplifying the equation:
8.0 L atm = V2 * 1.0 atm
Since the pressure and volume are inversely proportional, we can solve for V2 by dividing both sides of the equation by 1.0 atm:
V2 = 8.0 L
Therefore, the new volume of the gas when the pressure is reduced to 1.0 atm while keeping the temperature constant will be 8.0 L.
Question 22 Report
If gas A has a molar mass of 32 g/mol and gas B has a molar mass of 64 g/mol, what is the ratio of their diffusion rates?
Answer Details
The diffusion rate of a gas is influenced by its molar mass. In simpler terms, the lighter the gas, the faster it will diffuse. To find the ratio of the diffusion rates between gas A and gas B, we need to compare their molar masses. Gas A has a molar mass of 32 g/mol, while gas B has a molar mass of 64 g/mol. To calculate the ratio, we can divide the molar mass of gas B by the molar mass of gas A: 64 g/mol ÷ 32 g/mol = 2. Therefore, the ratio of their diffusion rates is 2:1. This means that gas B will diffuse twice as fast as gas A.
Question 23 Report
What is the IUPAC name for the compound CCl4 ?
Answer Details
The IUPAC name for the compound CCl4 is tetrachloromethane
Question 24 Report
Which of the following alkanes has a straight-chain structure?
Answer Details
A straight-chain structure in organic chemistry refers to a carbon chain where the carbon atoms are connected in a linear or straight fashion, without any branches or loops.
Among the given options, the alkane that has a straight-chain structure is butane (C4H10).
Butane is composed of four carbon atoms (C4) and ten hydrogen atoms (H10). Its carbon atoms are arranged in a straight or linear chain without any branches.
In contrast, the other options have structures that deviate from a straight-chain. Cyclopentane (C5H10) forms a ring or cyclical structure, Isobutane (C4H10) has a branch coming off the main chain, and Benzene (C6H6) has a cyclic structure.
In summary, only butane (C4H10) has a straight-chain structure among the given options.
Question 25 Report
What type of reaction is involved in the formation of alkanols from alkenes?
Answer Details
The reaction involved in the formation of alkanols from alkenes is called addition reaction.
In an addition reaction, two reactants combine together to form a larger product molecule. In this case, the alkene (a hydrocarbon with a carbon-carbon double bond) reacts with a molecule of water (H2O) to form an alkanol (an alcohol).
During the reaction, the carbon-carbon double bond in the alkene breaks, and each carbon atom bonds to a hydrogen atom from the water molecule.
This results in the formation of a single bond between the carbon atoms and a bond between each carbon atom and a hydrogen atom.
The remaining oxygen and hydrogen atoms from the water molecule form a hydroxyl group (-OH) on one of the carbon atoms. This addition reaction is a way to introduce an -OH group and create an alcohol from an alkene.
It is important to note that alkanols are a specific type of alcohol where the hydroxyl group is attached to a saturated carbon atom (a carbon atom bonded to four other atoms).
Therefore, the correct answer is addition reaction.
Question 26 Report
Which of the following is a primary constituent of crude oil?
Answer Details
Crude oil is composed of various hydrocarbons, which are organic compounds made up of hydrogen and carbon atoms. Hydrocarbons are the primary constituents of crude oil. They can vary in size and structure, giving rise to different components of crude oil. Out of the options given, **methane** is a primary constituent of crude oil. Methane is the simplest hydrocarbon and is commonly known as natural gas. It consists of one carbon atom bonded to four hydrogen atoms (CH4). While methane is primarily associated with natural gas, it can also be found as a component of crude oil. Pentane, ethanol, and heptane are also hydrocarbons but are not considered primary constituents of crude oil. Pentane and heptane are both hydrocarbons composed of five and seven carbon atoms respectively, while ethanol is an alcohol composed of two carbon atoms, six hydrogen atoms, and one oxygen atom. To summarize, the primary constituent of crude oil is **methane**, which is a simple hydrocarbon consisting of one carbon atom and four hydrogen atoms.
Question 27 Report
What is the main environmental concern associated with sulfur dioxide emissions?
Answer Details
The main environmental concern associated with sulfur dioxide emissions is the formation of acid rain.
When sulfur dioxide (SO2) is released into the atmosphere, it reacts with oxygen and water vapor to form sulfuric acid (H2SO4). This acid then falls back to the Earth's surface as acid rain.
Acid rain can have damaging effects on the environment, including lakes, forests, and buildings. It can make water bodies more acidic, which harms aquatic plants and animals. It can also damage trees and vegetation, making it difficult for them to grow and survive. In addition, acid rain can corrode buildings, statues, and other structures made of stone or metal.
So, the main environmental concern associated with sulfur dioxide emissions is the formation of acid rain, which can have destructive impacts on ecosystems and man-made structures.
Question 28 Report
Which of the following factors does NOT affect the rate of a chemical reaction?
Answer Details
The factor that does NOT affect the rate of a chemical reaction is the molecular weight of products.
The rate of a chemical reaction is influenced by various factors, such as:
However, the molecular weight of products does not directly affect the rate of a chemical reaction. The rate of a reaction is determined by the characteristics of the reactants and the conditions in which the reaction takes place, not the molecular weight of the resulting products.
Question 29 Report
The contact process is used for the industrial production of
Answer Details
The contact process is used for the industrial production of sulfuric acid (H2SO4).
Sulfuric acid is a very important chemical that is widely used in various industries. It serves as a key raw material for the production of fertilizers, detergents, dyes, and many other products.
The contact process is the main method used to produce sulfuric acid on a large scale. The process involves the conversion of sulfur dioxide (SO2) into sulfur trioxide (SO3), which is then reacted with water to produce sulfuric acid. The reaction between sulfur dioxide and oxygen occurs in the presence of a catalyst, typically vanadium pentoxide (V2O5).
Here is a simplified explanation of the steps involved in the contact process:
1. Burning sulfur or sulfide ores: The process starts with burning sulfur or sulfide ores to produce sulfur dioxide gas (SO2). Alternatively, sulfur dioxide can be obtained from the purification of natural gas or as a byproduct from other industrial processes.
2. Conversion of sulfur dioxide to sulfur trioxide: The sulfur dioxide gas is then oxidized to sulfur trioxide gas by passing it over a catalyst, which is usually vanadium pentoxide (V2O5). This step takes place at a high temperature, typically around 450-500 degrees Celsius.
3. Absorption of sulfur trioxide in sulfuric acid: The sulfur trioxide gas obtained in the previous step is then passed into a tower containing concentrated sulfuric acid. The two substances react to form oleum, which is a solution containing sulfuric acid and excess sulfur trioxide.
4. Dilution of oleum with water: The oleum is then diluted with water to produce the final product, which is sulfuric acid. The dilution process also generates a large amount of heat, which is typically recovered and used in other parts of the industrial plant.
Overall, the contact process allows for the efficient and large-scale production of sulfuric acid, which is an essential chemical in various industrial processes.
Question 30 Report
What is the molar mass of water (H2O)?
Answer Details
The molar mass of water (H2O) is 18 g/mol.
To understand why, we need to look at the atomic masses of the elements present in water.
The atomic mass of hydrogen (H) is approximately 1 g/mol, and the atomic mass of oxygen (O) is approximately 16 g/mol.
In the water molecule (H2O), there are two hydrogen atoms and one oxygen atom.
To calculate the molar mass of water, we multiply the number of atoms of each element by its atomic mass and add them together.
For hydrogen: 2 atoms × 1 g/mol = 2 g/mol
For oxygen: 1 atom × 16 g/mol = 16 g/mol
Adding these two values gives us a total of 18 g/mol.
Therefore, the molar mass of water (H2O) is 18 g/mol.
Question 31 Report
An element has an atomic number of 8 and a mass number of 16. How many neutrons does this element have?
Answer Details
An element with an atomic number of 8 and a mass number of 16 has 8 neutrons.
Let's break down the information to understand why.
The atomic number of an element tells you the number of protons in its nucleus. In this case, the element has an atomic number of 8, which means it has 8 protons.
The mass number of an element is the sum of its protons and neutrons. In this case, the mass number is 16.
To calculate the number of neutrons, we subtract the atomic number from the mass number: Number of Neutrons = Mass Number - Atomic Number
So, in this case, the number of neutrons would be: 16 (mass number) - 8 (atomic number) = 8 neutrons.
Therefore, the element in question has 8 neutrons.
Question 32 Report
Why is water often referred to as the "universal solvent"?
Answer Details
Water is often referred to as the "universal solvent" because it has the ability to dissolve many different substances. This is primarily due to its polar nature.
When we say water is polar, it means that the water molecule has a slight positive charge at one end (hydrogen) and a slight negative charge at the other end (oxygen). This charge difference creates an attraction between the water molecule and other charged molecules or ions.
Because of its polar nature, water can effectively separate and surround particles or molecules of other substances, causing them to separate and disperse. This is known as dissolving. Water can dissolve many substances, including salts, sugars, acids, and many other organic and inorganic compounds.
The ability of water to dissolve so many different substances is important for several reasons. First, it allows nutrients and minerals to be transported within living organisms, facilitating biochemical reactions necessary for life.
Furthermore, water's ability to dissolve substances enables it to act as a solvent in many chemical reactions, making it essential for many industrial and biological processes. Water acts as a medium in which substances can react, allowing chemical reactions to occur efficiently.
Overall, the combination of water's abundance, essentiality for life, involvement in chemical reactions, and its ability to dissolve a wide variety of substances due to its polar nature is why water is often referred to as the "universal solvent."
Question 33 Report
Which organic compound is responsible for the characteristic aroma of fruits?
Answer Details
The organic compound responsible for the characteristic aroma of fruits is ester.
Esters are organic compounds that are formed when an alcohol reacts with an organic acid in the presence of a catalyst. They have a pleasant fruity, floral, or sweet smell, which is why they are often used in perfumes and flavorings. Esters are volatile compounds, meaning they easily evaporate and contribute to the aroma of fruits.
On the other hand, alkanes and alkynes are hydrocarbons that do not have a specific aroma. They are odorless and are typically found in substances like petroleum and natural gas.
Amines, although they can have distinct odors, are not primarily responsible for the characteristic aroma of fruits. Amines often have a fishy or ammonia-like smell and are found in substances like rotten eggs or urine.
Therefore, the correct answer is ester, as it is the organic compound that gives fruits their delightful scent.
Question 34 Report
When a substance is oxidized, it
Answer Details
When a substance is oxidized, it loses electrons.
Oxidation is a chemical process in which a substance reacts with another substance or element, resulting in the loss of electrons from the oxidized substance. In other words, the oxidized substance gives away electrons to another substance or element.
This loss of electrons during oxidation is significant because electrons are negatively charged particles that play a crucial role in chemical reactions. By losing electrons, the oxidized substance becomes positively charged or oxidized.
It's important to note that oxidation doesn't necessarily involve the gain of oxygen atoms. While some reactions involving oxidation do include the addition of oxygen, it is not a defining characteristic of oxidation. The key factor is the loss of electrons, regardless of whether oxygen atoms are involved or not.
Question 35 Report
Identify the reducing agent in the following reaction:
Zn + CuSO4
→ ZnSO4
+ Cu
Answer Details
In the given reaction, Zn reacts with CuSO4 to form ZnSO4 and Cu. To identify the reducing agent in this reaction, we need to understand the concept of oxidation and reduction. Oxidation is the loss of electrons, while reduction is the gain of electrons. In any redox reaction, there is an oxidizing agent (which causes oxidation) and a reducing agent (which causes reduction). Let's analyze the reaction: Zn + CuSO4 → ZnSO4 + Cu In this reaction, Zn is being oxidized because it loses two electrons to form Zn2+ ions in ZnSO4. On the other hand, Cu2+ ions in CuSO4 are being reduced because they gain two electrons to form Cu atoms. The reducing agent is the species that causes the reduction to occur. In this reaction, Zn is the reducing agent because it gives away its two electrons, causing the Cu2+ ions to be reduced to Cu atoms. Therefore, the reducing agent in this reaction is **Zinc (Zn)**.
Question 36 Report
Which trace gas in the atmosphere plays a significant role in the greenhouse effect?
Answer Details
The trace gas in the atmosphere that plays a significant role in the greenhouse effect is carbon dioxide.
The greenhouse effect is a natural process that helps to regulate the Earth's temperature. When sunlight reaches the Earth's surface, some of it is absorbed and warms the planet. However, some of this heat is also radiated back into space.
Greenhouse gases, such as carbon dioxide, trap some of this heat and prevent it from escaping into space. They act like a blanket around the Earth, keeping it warm. Without these greenhouse gases, the Earth would be much colder and life as we know it would not be possible.
However, human activities, such as burning fossil fuels like coal, oil, and natural gas, have been increasing the concentration of carbon dioxide in the atmosphere. This excessive amount of carbon dioxide has enhanced the greenhouse effect, leading to global warming.
Global warming is the long-term increase in Earth's average temperature due to the increased levels of greenhouse gases. It is causing changes in climate patterns, melting of polar ice caps, rising sea levels, and extreme weather events.
So, in summary, carbon dioxide is the trace gas in the atmosphere that plays a significant role in the greenhouse effect and contributes to global warming.
Question 37 Report
Which of the following mixtures is an example of a colloid?
Answer Details
A colloid is a type of mixture where tiny particles of one substance are dispersed evenly throughout another substance. The particles in a colloid are larger than the molecules in a solution, which allows them to scatter light and give the mixture a cloudy or opaque appearance. Now let's analyze each option to determine which one is an example of a colloid:
1. Milk: Milk is an example of a colloid. It consists of tiny fat globules (particles) dispersed throughout a watery substance. When light shines through milk, it scatters off of the fat globules, giving it a cloudy appearance.
2. Orange juice: Orange juice is not an example of a colloid. It is a homogenous mixture of water and dissolved molecules, such as sugars and vitamins. The particles in orange juice are too small to scatter light.
3. Saltwater: Saltwater is a solution, not a colloid. It consists of salt (solute) dissolved in water (solvent). In a solution, the particles are very small and evenly distributed, and they do not scatter light.
4. Sugar dissolved in water: Sugar dissolved in water is also a solution, not a colloid. The sugar particles are molecular in size and are completely dispersed in the water.
In conclusion, milk is the only option that is an example of a colloid. The tiny fat globules in milk are larger than the molecules in a solution, causing them to scatter light and give the mixture its cloudy appearance.
Question 38 Report
What is the chemical formula of rust, which is formed on the surface of iron in the presence of oxygen and moisture?
Answer Details
The correct chemical formula of rust, which is formed on the surface of iron in the presence of oxygen and moisture, is Fe2O3. Rust is a reddish-brown oxide that forms when iron reacts with oxygen and water. It occurs as a result of a chemical reaction called oxidation. When iron comes into contact with oxygen in the presence of moisture, a series of reactions occur that lead to the formation of rust. The formula Fe2O3 represents rust, where Fe represents iron and O represents oxygen. The number 2 indicates that there are two atoms of iron, and the number 3 indicates that there are three atoms of oxygen in the rust formula. To summarize, rust is formed on the surface of iron when it reacts with oxygen and moisture, and its chemical formula is Fe2O3.
Question 39 Report
According to the kinetic theory of gases, the pressure exerted by a gas is due to
Answer Details
The pressure exerted by a gas is due to the collisions of gas particles with the container walls. This is explained by the kinetic theory of gases, which provides a simple model to understand the behavior of gases. According to the kinetic theory, a gas is made up of tiny particles (such as atoms or molecules) that are in constant random motion. These particles move in straight lines until they collide with each other or with the walls of the container. When gas particles collide with the walls of the container, they exert a force on the walls. This force is what we call pressure. The more frequently and forcefully the particles collide with the walls, the greater the pressure exerted by the gas. The other options mentioned - the vibrations of gas particles, the weight of the gas particles, and the attractive forces between gas particles - are not the primary factors contributing to the pressure exerted by a gas. While these factors may play a role in certain situations, they are not the main reason for the pressure in a gas. In summary, the pressure exerted by a gas is primarily due to the collisions of gas particles with the container walls. This concept is explained by the kinetic theory of gases, which helps us understand the behavior of gases and how they exert pressure.
Question 40 Report
At room temperature and standard pressure, chlorine gas is in which state of matter?
Answer Details
At room temperature and standard pressure, chlorine gas is in the state of matter called gas.
In chemistry, there are three main states of matter: solid, liquid, and gas. The state of matter depends on the arrangement and movement of the particles that make up a substance.
Let's consider each state of matter one by one:
Solid: In a solid state, the particles are tightly packed together and have fixed positions. They vibrate in place but do not move around freely. Solids have a definite shape and volume. Examples of solids are a desk, a brick, or a piece of ice.
Liquid: In a liquid state, the particles are more spread out compared to solids. They have some freedom to move, but they still remain close to each other. Liquids can flow and take the shape of the container they are in. However, they still have a definite volume. Examples of liquids are water, milk, or oil.
Gas: In a gas state, the particles are far apart and move freely in all directions. They have much more energy compared to particles in solids or liquids. Gases do not have a definite shape or volume and can expand to fill the entire space they are contained in. Examples of gases are air, oxygen, or carbon dioxide.
Chlorine gas, at room temperature and standard pressure, exists as individual chlorine molecules that are far apart and move freely. Therefore, it is classified as a gas.
Would you like to proceed with this action?