Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
Using the metal activity series, the metal that can liberate hydrogen gas from steam is?
Answer Details
The metal that can liberate hydrogen gas from steam is iron. The metal activity series is a list of metals in order of their reactivity, with the most reactive metals at the top and the least reactive metals at the bottom. When a metal is placed in a solution of steam (water vapor), the metal will react with the steam if it is more reactive than hydrogen. In this case, iron is more reactive than hydrogen, so it can displace hydrogen from the steam to form hydrogen gas. This reaction can be represented by the equation: Fe + H2O (steam) → FeO (iron oxide) + H2 (hydrogen gas) So, when steam is passed over iron, hydrogen gas is liberated and iron oxide is formed.
Question 2 Report
Which of the following compound is NOT the correct formed compound when the parent metal is heated in air?
Answer Details
The compound that is NOT correctly formed when the parent metal is heated in air is: tri-iron tetraoxide (Fe2O). This is because the correct compound formed from the heating of iron in air is iron (III) oxide or Fe2O3. The formula for tri-iron tetraoxide is incorrect, as it implies that there are only three iron atoms in the compound when there should be four.
Question 3 Report
The sulphide that is commonly used in coating electric fluorescent tubes is?
Answer Details
The sulphide commonly used in coating electric fluorescent tubes is Zinc Sulphide. Zinc Sulphide is a type of material that glows when it is exposed to ultraviolet light. When ultraviolet light is generated inside a fluorescent tube, it excites the Zinc Sulphide particles, causing them to emit visible light. This visible light is what we see as the bright light coming from the tube. So, Zinc Sulphide acts as a phosphor and helps in producing the bright light in fluorescent tubes.
Question 4 Report
2-methylprop-1-ene is a structural isomer of?
Question 5 Report
Calcium forms complexes with ammonia because
Answer Details
The reason why calcium forms complexes with ammonia is that it has empty d-orbitals.
Question 6 Report
The IUPAC nomenclature of the structure is
Answer Details
The IUPAC nomenclature of the structure is "2-chloro-2-methylbutane". The name is derived by first identifying the longest carbon chain, which in this case contains four carbon atoms (butane). The carbon chain is numbered from one end to the other, giving the substituents the lowest possible numbers. Starting from either end, we can see that the first carbon atom has a chlorine atom attached to it, which is represented by the prefix "chloro-". Moving along the chain, the second carbon atom has a methyl group attached to it, which is represented by the prefix "methyl-". Since the substituents are in the second position from each other, we use the prefix "di-" to indicate two substituents in this position. Finally, we use the suffix "-ane" to indicate that the molecule is an alkane. Therefore, the correct name for this molecule is "2-chloro-2-methylbutane".
Question 7 Report
An organic compound contains 69% carbon, 15.3% hydrogen and 30.7% oxygen. Calculate the the empirical formula [C=12, H = 1, O = 16]
Answer Details
Question 8 Report
Wrought iron is obtained by heating cast iron in a furnace with?
Answer Details
Wrought iron is a type of iron that is very malleable and ductile, meaning it can be easily shaped and formed into various objects. It is obtained by heating cast iron in a furnace with haematite, also known as iron(III) oxide. When cast iron is heated with haematite in a furnace, a chemical reaction takes place where the haematite reacts with the carbon in the cast iron to produce carbon dioxide gas. This reaction also produces molten iron, which is then further heated to remove any impurities like sulfur and phosphorus. This molten iron is then poured into molds to form ingots of wrought iron. Therefore, haematite is essential in the process of obtaining wrought iron from cast iron.
Question 9 Report
Hard water is water with high concentrations of dissolved ions, in particular calcium and
Answer Details
Hard water is water that contains high amounts of dissolved minerals, specifically calcium and magnesium ions. These minerals come from the rocks and soil that the water flows through and can accumulate in the water as it travels to your home. When you use hard water, it can leave mineral deposits on your pipes, fixtures, and appliances, which can reduce their efficiency and lifespan. It can also make soap less effective and leave your skin feeling dry and itchy. Therefore, it is important to treat hard water if it is a problem in your area.
Question 10 Report
The removal of rust from iron by treatment with tetraoxosulphate (vi) acid is based on the
Answer Details
Question 11 Report
30 cm3 of oxygen at 10 atmosphere pressure is placed in a 20 dm3 container. Calculate the new pressure if the temperature is kept constant.
Answer Details
Given:
First, convert all volumes to the same units. Since 1 dm3dm3 is 1000 cm3cm3:
𝑉2=20 dm3=20×1000 cm3=20000 cm3V2=20dm3=20×1000cm3=20000cm3
Now, using Boyle's Law:
𝑃1𝑉1=𝑃2𝑉2P1V1=P2V2
Substitute the known values into the equation:
10×30=𝑃2×2000010×30=P2×20000
300=𝑃2×20000300=P2×20000
Solve for 𝑃2P2:
𝑃2=30020000P2=20000300
𝑃2=0.015 atmospheresP2=0.015atmospheres
Therefore, the new pressure if the temperature is kept constant is:
Question 12 Report
Alkanes are used mainly?
Question 13 Report
The boiling point of water, ethanol, toulene and butan-2-ol are 373.0k, 351.3k, 383.6k and 372.5k respectively, which liquid has the highest vapour pressure at 323.0k
Question 14 Report
The dehydration of CH3 CH2 CH2 CH2 OH will give?
Question 16 Report
SO2 + O2 → 2SO3
In the reaction above, the most suitable catalyst is?
Answer Details
The most suitable catalyst for the given reaction is vanadium(V)oxide (V2O5). Vanadium(V)oxide is a commonly used catalyst for the oxidation of sulfur dioxide (SO2) to sulfur trioxide (SO3). The reaction is an exothermic reaction, and it occurs at high temperatures (around 450-500°C) in the presence of a catalyst. V2O5 is an effective catalyst for this reaction because it has a high surface area and can provide active sites for the reaction to occur. The vanadium ions in the V2O5 catalyst undergo redox reactions with the sulfur dioxide and oxygen molecules, which promotes the formation of sulfur trioxide. Chromium(VI)oxide and iron(III)oxide are not suitable catalysts for this reaction because they are not effective at promoting the oxidation of sulfur dioxide to sulfur trioxide. Copper(I)oxide can be used as a catalyst for the reaction, but it is not as effective as vanadium(V)oxide.
Question 17 Report
When marble is heated to 1473K, another whiter solid is obtained which reacts vigoriously with water to give an alkaline solution. The solution contains
Answer Details
The white solid obtained when marble (calcium carbonate, CaCO3) is heated to 1473K is calcium oxide (CaO), also known as quicklime. When quicklime reacts vigorously with water, it forms calcium hydroxide (Ca(OH)2), which is an alkaline solution. Therefore, the solution obtained from the reaction of quicklime with water contains calcium hydroxide (Ca(OH)2).
Question 18 Report
A piece of radioactive element has initially 8.0×10^22 atoms. The half life of two days after 16 days the number of atom is
Question 19 Report
Which of the following is used as a moderator to control nuclear fission?
Answer Details
Heavy water (D2O) is used as a moderator to control nuclear fission. A moderator is a substance that is used to slow down the neutrons produced in a nuclear reaction, making them more likely to be captured by the fuel nuclei and causing further fission. Heavy water is a type of water that contains a larger amount of the isotope deuterium (D) than regular water. Deuterium has an extra neutron compared to the more common hydrogen isotope, and this makes heavy water more effective at slowing down neutrons than regular water. Lead, iron, and chromium are not typically used as moderators in nuclear reactors. Lead can be used as a shield to absorb radiation, while iron and chromium are used in the construction of the reactor vessel and other components.
Question 20 Report
A metal which can be used as sacrificial anode for preventing corrosion of length of iron pipe is
Answer Details
Question 21 Report
Which of the following constitutes a mixture? I. Petroleum II. Rubber latex III. Vulcanizer’s solution IV. Carbon (iv) sulphide
Answer Details
Question 22 Report
The sub-atomic particles located in the nucleus of an atom are?
Answer Details
The sub-atomic particles located in the nucleus of an atom are neutron and proton. The nucleus is the dense core of an atom that contains most of its mass. Protons are positively charged particles found in the nucleus, and they determine the atomic number of the element. Neutrons are neutral particles found in the nucleus, and they help stabilize the nucleus by balancing the repulsive forces between the positively charged protons. Electrons, on the other hand, are negatively charged particles that are located outside the nucleus in energy levels or shells. They are attracted to the positively charged nucleus by electrostatic forces and are involved in chemical bonding between atoms. The number of protons in the nucleus determines the identity of the element, while the number of neutrons determines its isotopes. Isotopes of an element have the same number of protons but different numbers of neutrons in the nucleus. In summary, the two sub-atomic particles located in the nucleus of an atom are neutron and proton.
Question 23 Report
H+ + OH− → H2 O
The equation above illustrates
Question 24 Report
A sample of gas exerts a pressure of 8.2 atm when confined in a 2.93 dm3 container at 20c. The number of moles of gas in the sample is
Question 25 Report
6g of Mg was to 100cm3 of 1 moldm3 H2 SO4 . What mass of Mg remained undissolved? (Mg = 24)
Answer Details
The balanced chemical equation for the reaction between magnesium (Mg) and sulfuric acid (H2SO4) is: Mg + H2SO4 -> MgSO4 + H2 According to the equation, one mole of Mg reacts with one mole of H2SO4 to produce one mole of magnesium sulfate (MgSO4) and one mole of hydrogen gas (H2). Since the concentration of the sulfuric acid is 1 moldm3, this means that there is one mole of H2SO4 in every 1 liter (1000 cm3) of solution. To determine the amount of Mg that reacts with the H2SO4, we need to use stoichiometry. One mole of Mg reacts with one mole of H2SO4, so the amount of Mg that reacts with 1 moldm3 of H2SO4 is given by: 6g / 24g/mol = 0.25 mol Since the reaction is 1:1, this means that 0.25 mol of H2SO4 is consumed in the reaction. The volume of the solution is 100cm3 (0.1 dm3), so the amount of H2SO4 in the solution is: 1 mol/dm3 x 0.1 dm3 = 0.1 mol The amount of H2SO4 that remains after the reaction is: 0.1 mol - 0.25 mol = -0.15 mol This negative value means that all of the H2SO4 was consumed in the reaction, and there is excess Mg left over. The mass of Mg that remains undissolved is given by: 0.15 mol x 24g/mol = 3.6g Therefore, the correct answer is 3.6g.
Question 26 Report
Which of the following will act as both oxidizing agents and reducing agents?
Answer Details
The oxidizing and reducing properties of a substance depend on its ability to gain or lose electrons. A substance that can gain electrons acts as an oxidizing agent, while a substance that can lose electrons acts as a reducing agent. Among the given options, both Cl2 (chlorine gas) and SO2 (sulfur dioxide) can act as both oxidizing and reducing agents depending on the reaction conditions. - Cl2 can act as an oxidizing agent when it gains electrons to form Cl- ions, and it can act as a reducing agent when it loses electrons to form Cl+ ions. For example, in the reaction Cl2 + 2KBr → 2KCl + Br2, chlorine gas is acting as an oxidizing agent since it is gaining electrons from bromide ions to form bromine gas. However, in the reaction 2Cl- + Cl2 → 2Cl2-, chlorine gas is acting as a reducing agent since it is losing electrons to form chloride ions. - SO2 can act as an oxidizing agent when it gains electrons to form sulfite ions (SO32-), and it can act as a reducing agent when it loses electrons to form sulfur trioxide (SO3). For example, in the reaction SO2 + 2H2S → 3S + 2H2O, sulfur dioxide is acting as a reducing agent since it is losing electrons to form elemental sulfur. However, in the reaction 2SO32- + O2 → 2SO42-, sulfur dioxide is acting as an oxidizing agent since it is gaining electrons to form sulfate ions. H2S (hydrogen sulfide) and NH3 (ammonia) are not likely to act as both oxidizing and reducing agents under normal conditions. H2S tends to act as a reducing agent by donating electrons to oxidizing agents, while NH3 tends to act as a reducing agent by donating electrons to oxidizing agents or as a base by accepting protons.
Question 27 Report
Complete dehydrogenation of ethyne yields
Question 28 Report
There is a large temperature interval between the melting point and the boiling point of metal because:
Answer Details
The correct answer is: "melting does not break the metallic bond but boiling does." The metallic bond is the force of attraction between metal atoms, which holds them together to form a solid. When a metal is heated, its temperature increases, and at a certain point, the energy provided by the heat is enough to overcome the metallic bond and cause the metal to melt. However, even in the liquid state, the metallic bond remains intact, which is why metals have a very high melting point. On the other hand, when the temperature is further increased, the energy provided by the heat becomes enough to break the metallic bond, and the metal atoms become completely detached from one another. This results in the metal boiling and turning into a gas. Because the metallic bond is much stronger than other types of intermolecular forces, such as van der Waals forces, it requires a lot of energy to break, resulting in a large temperature interval between the melting point and boiling point of metal.
Question 29 Report
If the volume of a given mass of a gas at 0ºc is 29.5cm3 . What will be the volume of the gas at 15ºc, given that the pressure remains constant.
Question 30 Report
One of the active components of baking powder is
Answer Details
The active component of baking powder is sodium bicarbonate (NaHCO3). It is responsible for the leavening or rising of baked goods by releasing carbon dioxide gas when it reacts with an acid. Other ingredients in baking powder, such as monocalcium phosphate and sodium aluminum sulfate, provide the acid component for the reaction to occur. Magnesium sulfate (MgSO4) and calcium sulfate (CaSO4) are not typically used in baking powder, and sodium chloride (NaCl) is simply table salt and not an active ingredient in leavening.
Question 31 Report
Which of the following is stable to heat
Answer Details
Out of the given options, K2CO3 is stable to heat.
Question 32 Report
N2 O4 ? 2NO2 (? = -ve)
From the reaction above, which of these conditions would produce the highest equilibrium yield for N2 O4 ?
Answer Details
The highest equilibrium yield of N2O4 would be produced at low temperature and low pressure. In a chemical reaction, the position of the equilibrium can be influenced by changing the temperature or pressure. A decrease in temperature or an increase in pressure favors the side of the reaction with the fewer moles of gas (in this case, N2O4). This means that, if the temperature is low and the pressure is low, there will be more N2O4 at equilibrium, as the reaction will shift to the right to counteract the reduction in the concentration of N2O4. So, low temperature and low pressure would produce the highest equilibrium yield of N2O4.
Question 34 Report
What is the shape of a molecule of CCl4?
Answer Details
The shape of a molecule of CCl4 is tetrahedral.
Question 35 Report
An organic compound decolourized acidified KMnO4 solution but failed to react with ammonical AgNO3 solution. The organic compound is likely?
Answer Details
The given information suggests that the organic compound is an unsaturated compound (because it decolorized the acidified KMnO4 solution), but it does not contain a functional group that reacts with ammonical AgNO3 solution. Therefore, the likely organic compound is an alkene or an alkyne. Carboxylic acids can also react with acidified KMnO4 solution, but they would also react with ammonical AgNO3 solution to form a silver carboxylate salt. Alkanes are saturated compounds and do not react with either reagent, so they would not decolorize the acidified KMnO4 solution. Therefore, based on the given information, the most likely option is either an alkene or an alkyne.
Question 36 Report
The function of sulphur during the vulcanization of rubber is to
Answer Details
The function of sulphur during the vulcanization of rubber is to form chains which bind rubber molecules together.
Question 37 Report
Which of the following roles does sodium chloride play in preparation? It
Answer Details
The role that sodium chloride (NaCl) plays in soap preparation is to separate soap from glycerol. When fats or oils are hydrolyzed with an alkali, such as sodium hydroxide (NaOH), the result is a mixture of soap and glycerol. Adding NaCl to this mixture helps to induce the precipitation of the soap, allowing it to be separated from the glycerol. This process is known as "salting out" and is used to purify the soap and remove impurities. Sodium chloride does not react with glycerol or accelerate the decomposition of fat and oil. Also, it does not convert the fatty acid to its sodium salt as this conversion is done by the alkali (such as NaOH) during the saponification process.
Question 38 Report
Mixing aqueos solution of barium hydroxide and sodium tetraoxocarbonate (iv) yields a white precipitate of
Answer Details
Mixing aqueous solutions of barium hydroxide and sodium tetraoxocarbonate (IV) would result in a chemical reaction that produces a white precipitate of barium tetraoxocarbonate (IV). The balanced chemical equation for this reaction is: Ba(OH)2(aq) + Na2CO3(aq) → BaCO3(s) + 2NaOH(aq) In the above equation, the barium hydroxide (Ba(OH)2) reacts with sodium tetraoxocarbonate (IV) (Na2CO3) to form barium tetraoxocarbonate (IV) (BaCO3), which is a white precipitate, and sodium hydroxide (NaOH). Therefore, the correct option is 4) Barium tetraoxocarbonate.
Question 39 Report
which of these compounds exhibits resonance
Answer Details
The compound that exhibits resonance is benzene.
Question 40 Report
In the preparation of salts, the method employed will depend on the?
Answer Details
The method employed in the preparation of salts will depend on the composition of the salt. Different salts have different chemical properties, and the method used to prepare them will depend on these properties. For example, some salts can be easily dissolved in water, while others are not very soluble and may require the use of a different solvent or special conditions to dissolve. The dissociating ability, stability to heat, and precipitating ability of the salt may also play a role in determining the preparation method, but the most important factor is the composition of the salt.
Would you like to proceed with this action?