Question 1 Report
Solve the following equation: 2(2r−1) 2 ( 2 r − 1 ) - 53 5 3 = 1(r+2)
Answer Details
2(2r−1) 2 ( 2 r − 1 ) - 53 5 3 = 1(r+2) 1 ( r + 2 )
2(2r−1) 2 ( 2 r − 1 ) - 1(r+2) 1 ( r + 2 ) = 53 5 3
The L.C.M.: (2r - 1) (r + 2)
2(r+2)−1(2r−1)(2r−1)(r+2) 2 ( r + 2 ) − 1 ( 2 r − 1 ) ( 2 r − 1 ) ( r + 2 ) = 53 5 3
2r+4−2r+1(2r−1)(r+2) 2 r + 4 − 2 r + 1 ( 2 r − 1 ) ( r + 2 ) = 53 5 3
cross multiply the solution
3 = (2r - 1) (r + 2) or 2r2 2 + 3r - 2 (when expanded)
collect like terms
2r2 2 + 3r - 2 - 3 = 0
2r2 2 + 3r - 5 = 0
Factorize to get x = 1 or - 52