Solve for t in the equation \(\frac{3}{4}t+\frac{1}{3}(21-t)\) = 11,
Answer Details
First, we simplify the left-hand side of the equation:
\begin{align*}
\frac{3}{4}t + \frac{1}{3}(21-t) &= 11 \\
\frac{3}{4}t + 7 - \frac{1}{3}t &= 11 \\
\frac{5}{12}t &= 4 \\
t &= \frac{4 \times 12}{5} \\
t &= \frac{48}{5}
\end{align*}
Therefore, the value of t is \(9\frac{3}{5}\).
So, the correct answer is (d).