Evaluate \(\frac{x^2 + x - 2}{2x^2 + x -3}\) when x = -1
Answer Details
Substituting x = -1, we get:
\[\frac{(-1)^2 + (-1) - 2}{2(-1)^2 + (-1) - 3}\]
\[=\frac{1 - 1 - 2}{2 - 1 - 3}\]
\[=\frac{-2}{-2}\]
\[=1\]
Therefore, the value of the expression is 1 when x = -1. Hence the correct option is (d) 1.