To find the median, we need to first arrange the ages in order from lowest to highest. Then, we can determine which age lies in the middle of the list.
Arranging the ages in order of increasing magnitude, we have:
$$13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17$$
There are a total of 10+24+8+5+3 = 50 ages in the list, which is an even number. To find the median, we need to take the average of the two middle ages. The two middle ages are the 25th and 26th ages in the list, which are both 14. Therefore, the median age is:
$$(14 + 14)/2 = 14$$
So the correct answer is 14.