Nkojọpọ....
| 
                             Tẹ mọ́ & Dì mú láti fà yíká.  | 
                    |||
| 
                             Tẹ ibi lati pa  | 
                    |||
Ibeere 1 Ìròyìn
The combustion of candle under limited supply of air forms
Awọn alaye Idahun
When a candle burns under a limited supply of air, it doesn't get enough oxygen to completely burn the hydrocarbons in the wax. In complete combustion (with enough air), the candle would ideally produce water (H2O) and carbon dioxide (CO2). However, under limited air supply, the process is incomplete and results in the formation of soot and carbon monoxide (CO).
Here's why:
In summary, under limited air conditions, the combustion of a candle primarily forms soot and carbon monoxide (CO).
Ibeere 2 Ìròyìn
The amount of Faraday required to discharge 4.5 moles of Al3+ is
Awọn alaye Idahun
To determine the amount of Faraday required to discharge 4.5 moles of Al3+ ions, it is essential to understand Faraday's laws of electrolysis and the concept of moles in chemistry.
When discharging Al3+ ions to form aluminum metal (Al), the reduction half-reaction involved is:
Al3+ + 3e- → Al
From this equation, it can be seen that 3 moles of electrons (e-) are required to discharge 1 mole of Al3+ ions to form 1 mole of aluminum metal.
A Faraday is the amount of electric charge carried by one mole of electrons. Therefore, 1 Faraday corresponds to the charge needed to discharge 1 mole of electrons.
Now, to discharge 4.5 moles of Al3+, we need:
4.5 moles of Al3+ × 3 moles of electrons (e-)/mole of Al3+ = 13.5 moles of electrons
Since each Faraday discharges 1 mole of electrons, 13.5 moles of electrons correspond to 13.5 Faradays of charge.
Hence, the amount of Faraday required to discharge 4.5 moles of Al3+ ions is 13.5 Faradays.
Ibeere 3 Ìròyìn
A factor that does not affect the rate of a chemical reaction is
Awọn alaye Idahun
In evaluating the factors that affect the rate of a chemical reaction, we can look at each of the possible influences: surface area, temperature, volume, and catalyst.
Surface Area: When you increase the surface area of reactants, it allows more particles to collide with each other per unit of time, which in turn increases the rate of reaction. Imagine smaller particles like powders reacting faster than larger chunks because they have a greater surface exposed to the other reactants.
Temperature: Increasing the temperature usually increases the rate of reaction. Higher temperatures cause particles to move faster, increasing the energy of collisions, and therefore increasing the chance of successful reactions.
Catalyst: A catalyst is a substance that increases the rate of a chemical reaction without being consumed by it. It lowers the activation energy needed for the reaction to occur, thus allowing it to proceed faster.
Volume: The volume of the container or the amount of space in which a reaction occurs generally does not directly affect the rate of the reaction. While changing the volume can alter pressure or concentration in gaseous reactions, which in turn affects the rate, the volume itself is not a direct factor affecting reaction rate.
Therefore, the factor that does not directly affect the rate of a chemical reaction is volume. It indirectly affects reaction rates by altering concentration or pressure in certain reaction conditions, but it is not a direct influencing factor on its own.
Ibeere 4 Ìròyìn
CH3 -CH2 -OH and CH3 -O-CH3
The relationship between the two compounds above, is that they are
Awọn alaye Idahun
The relationship between the two compounds is that they are isomers.
To understand why these compounds are isomers, let's break down their structures and definitions:
1. Structures of the Compounds:
2. Definitions:
Both compounds have the same molecular formula: C2H6O. However, they have different arrangements of their atoms. Ethanol has a hydroxyl group (-OH) attached to an ethyl group (CH3-CH2-), while dimethyl ether involves two methyl groups (CH3-) bonded to an oxygen atom (O). This difference in structure leads to different chemical and physical properties, despite having the same molecular formula. Hence, these two compounds are classified as isomers.
Ibeere 5 Ìròyìn
Which of the following represents an order of increasing reactivity?
Awọn alaye Idahun
To determine the order of increasing reactivity of the elements listed, it's important to understand the general trends in metal reactivity. Metals react by losing electrons, and their reactivity is often influenced by their ability to lose these electrons easily. In many cases, generally, alkali metals are the most reactive, and noble metals are the least reactive. Here's a basic description of the reactivity of the given metals:
With these considerations in mind, the order of increasing reactivity from the given options would be:
Gold (Au) < Copper (Cu) < Tin (Sn) < Iron (Fe) < Calcium (Ca)
This is the order where the least reactive element is first (gold), and the most reactive element is last (calcium). Hence, the correct option represents the order: Au < Cu < Sn < Fe < Ca.
Ibeere 6 Ìròyìn
During the fractional distillation of crude oil, the fraction that distills at 200 - 2500 C is
Awọn alaye Idahun
The petroleum fractions that distill at 200–250°C are naphtha and kerosene,
Ibeere 7 Ìròyìn
An oxide of nitrogen that can rekindle a glowing splint is
Awọn alaye Idahun
The ability to rekindle a glowing splint is an indicator of the presence of an oxidizing agent, typically oxygen or a substance that releases oxygen. Among oxides of nitrogen, only a few are capable of doing this.
Nitrogen(I) oxide, commonly known as nitrous oxide (N2O), is not a strong enough oxidizer to rekindle a glowing splint.
Nitrogen(II) oxide, known as nitric oxide (NO), is not stable in the presence of oxygen and does not have the ability to rekindle a glowing splint because it does not actively release oxygen.
Nitrogen(IV) oxide or nitrogen dioxide (NO2), can support combustion by releasing oxygen as it decomposes. It is a brown gas and an effective oxidizer.
Dinitrogen tetraoxide (N2O4) is in equilibrium with nitrogen dioxide (NO2). However, at standard conditions, it is not as effective an oxidizer for rekindling a glowing splint as pure NO2.
In conclusion, the oxide of nitrogen that can rekindle a glowing splint is nitrogen(IV) oxide or nitrogen dioxide (NO2) due to its ability to release oxygen and support combustion.
Ibeere 8 Ìròyìn
Esterification reaction is analogous to
Awọn alaye Idahun
The **esterification reaction** is analogous to a **condensation reaction**. In chemistry, a **condensation reaction** is a type of chemical reaction where two molecules or functional groups combine to form a larger molecule, with the simultaneous loss of a small molecule, usually water. **Esterification** specifically involves the reaction between an acid (often a carboxylic acid) and an alcohol, resulting in the formation of an **ester** and the release of a molecule of water.
To explain this further, in an esterification reaction:
Conversely, the other types of reactions you've mentioned have different mechanisms:
Therefore, given the nature of how molecules join and release water, it's clear that the **esterification reaction** is analogous to a **condensation reaction**.
Ibeere 9 Ìròyìn
Hydrogen chloride gas and ammonia can be used to demonstrate the fountain experiment because they are
Awọn alaye Idahun
In the fountain experiment, hydrogen chloride gas (HCl) and ammonia (NH₃) are used to demonstrate the creation of a visible 'fountain' due to their high solubility in water. Here's a simple explanation:
When hydrogen chloride gas and ammonia gas come into contact with water, they dissolve very quickly and react vigorously. This is because both gases are very soluble in water. As they dissolve, a vacuum-like pressure is created inside the container where the gases are held, pulling water up into it, creating the 'fountain' effect.
Moreover, when HCl and NH₃ gases react with each other, they form a white, solid product known as ammonium chloride (NH₄Cl), which is a demonstration of how both gases can effectively dissolve and react with not just water, but also with each other.
Thus, the ability of these gases to create a fountain effect is primarily because they are very soluble in water, which allows them to dissolve rapidly and create the pressure differential necessary for the water to be pulled into the container dynamically.
Ibeere 10 Ìròyìn
The general molecular formula Cn H2n?2 represents that of an
Awọn alaye Idahun
The molecular formula CnH2n-2 represents an alkyne.
To understand this, let's take a look at the characteristics of hydrocarbons, which are compounds made up of hydrogen and carbon:
The formula CnH2n-2 indicates the presence of two fewer hydrogen atoms than in an alkene. This deficiency of hydrogen atoms is characteristic of a triple bond, which is a key feature of alkynes. Therefore, hydrocarbons with this formula must contain at least one triple carbon-carbon bond.
Ibeere 11 Ìròyìn
The molecular formular of a hydrocarbon with an empirical formula of CH3 and a molar mass of 30 is
Awọn alaye Idahun
To find the molecular formula of a hydrocarbon given its empirical formula and molar mass, you need to compare the empirical formula mass with the given molar mass.
The empirical formula given is CH3. The molar mass of the empirical formula is calculated as follows:
Total empirical formula mass = 12 + 3 = 15 g/mol
The provided molar mass of the compound is 30 g/mol. To determine how many empirical units are in the molecular formula, divide the molecular mass (given) by the empirical formula mass:
Number of empirical units = 30 g/mol / 15 g/mol = 2
Therefore, the molecular formula is twice the empirical formula:
Empirical formula: CH3
Molecular formula: (CH3)2 = C2H6
The correct molecular formula is C2H6.
Ibeere 12 Ìròyìn
Boyle's law can be expressed mathematically as
Awọn alaye Idahun
Boyle's Law describes the relationship between the volume and pressure of a given amount of gas held at a constant temperature. It states that the pressure of a gas is inversely proportional to its volume. In simpler terms, if you decrease the volume of a gas, its pressure increases, provided the temperature remains constant, and vice versa.
The mathematical expression of Boyle's Law is PV = K, where:
This relationship implies that if you multiply the pressure by the volume, the result will always be the same constant as long as no other variables are changed. This is the classic formulation of Boyle's Law, illustrating the inverse relationship between pressure and volume for a gas at constant temperature.
Ibeere 13 Ìròyìn
The main constituent of water-glass is
Awọn alaye Idahun
The main constituent of water-glass is sodium trioxosilicate(IV). Water-glass, also known as liquid glass, is common terminology for a mixture of sodium silicate and water. The primary chemical component in water-glass is sodium silicate, which includes sodium ions (Na+) bonded with silicate ions (SiO44-).
Essentially, when sodium silicate is dissolved in water, it results in a viscous liquid that can be utilized in various applications such as in cements, passive fire protection, textile and lumber processing, and as a sealant. Sodium trioxosilicate(IV) forms a significant part of this mixture as it reacts with other compounds to create a hardened, glass-like structure when it dries. Therefore, when water-glass is mentioned, it is mostly referring to solutions that have sodium trioxosilicate(IV) as their principal compound.
Ibeere 14 Ìròyìn
The stability of atomic nucleus is determined by ratio of
Awọn alaye Idahun
The stability of an atomic nucleus is primarily determined by the neutron/proton ratio. This refers to the number of neutrons in relation to the number of protons within the nucleus. Let's break down why this ratio is crucial for nuclear stability:
The right balance between the number of neutrons and protons helps in achieving nuclear stability.
An imbalance in this ratio often results in an unstable nucleus, leading to radioactive decay as the nucleus attempts to reach a more stable form. This is why the neutron/proton ratio is a fundamental factor in the stability of the atomic nucleus.
Ibeere 15 Ìròyìn
Scandium is not regarded as a transition metal because its ion has
Awọn alaye Idahun
Scandium is not regarded as a transition metal because its ion has no electron in the d-orbital.
To understand this, let's first define a transition metal. A transition metal is defined as an element that has an incomplete d-subshell in either its elemental form or in any of its common oxidation states.
When Scandium (Sc) loses electrons to form its most common ion (Sc3+), it loses three electrons. These electrons are removed from the 4s and 3d orbitals. The electron configuration for Scandium is [Ar] 3d1 4s2. Upon losing three electrons to form Sc3+, the resulting electron configuration is [Ar], which means there are:
As a result, there are no electrons in the d-orbital of the Scandium ion, which does not meet the criteria for a transition metal.
Ibeere 16 Ìròyìn
The reaction between alkanoic acids and alkanols in the presence of an acid catalyst is known as
Awọn alaye Idahun
The reaction between alkanoic acids and alkanols in the presence of an acid catalyst is known as esterification.
An alkanoic acid, also known as a carboxylic acid, is a type of organic acid that contains a carboxyl group (-COOH). An alkanol, commonly referred to as an alcohol, contains a hydroxyl group (-OH).
When an alkanoic acid reacts with an alkanol in the presence of an acid catalyst (commonly sulfuric acid), they combine to form an ester and water. This particular reaction is termed esterification. The acid catalyst speeds up the reaction by donating protons, which helps in breaking and forming new bonds.
Here's a simplified view of the reaction:
1. Alkanoic Acid (R-COOH) + Alkanol (R'-OH) -> Ester (R-COOR') + Water (H2O)
The key characteristics of esterification are:
Therefore, in summary, the process described is esterification.
Ibeere 17 Ìròyìn
Biuret test is a chemical test used for detecting the presence of
Awọn alaye Idahun
The Biuret test is a chemical test used for detecting the presence of proteins. When you perform a Biuret test, you are looking for peptide bonds, which are the connections between the amino acids in a protein. This is how it works:
The test is specifically tailored to proteins because carbohydrates, amines, and alkanoates do not exhibit the required peptide bonds necessary for this color change. Therefore, the Biuret test is not suitable for detecting these compounds.
Ibeere 18 Ìròyìn
The composition of alloy permalloy is iron and
Awọn alaye Idahun
The alloy known as **permalloy** is composed primarily of **iron** and **nickel**. Permalloy is a well-known magnetic alloy that typically consists of about **80% nickel and 20% iron**. It is renowned for having high magnetic permeability, meaning it can become magnetized easily, which makes it extremely useful in a variety of electrical and magnetic applications, such as transformers, memory storage, and magnetic shielding. The nickel in permalloy enhances the magnetic properties of the iron, giving the alloy its unique characteristics.
Ibeere 19 Ìròyìn
If a stable neutral atom has a mass number of 31, the number of electrons and neutrons respectively are
Awọn alaye Idahun
To answer this question, let's break it down step by step:
Mass Number: The mass number is the total number of protons and neutrons in an atom's nucleus. In this case, the mass number is given as 31.
Stable Neutral Atom: A stable neutral atom has no overall electrical charge, meaning the number of protons (positively charged) must equal the number of electrons (negatively charged).
If we symbolize the number of protons by the atomic number (Z), we can say:
1. **Protons = Electrons** in a neutral atom.
2. **Mass Number (A) = Protons + Neutrons**.
Given that the mass number is 31, we have the equation:
A = Protons + Neutrons = 31.
Assuming a commonly known stable element like Phosphorus, which has an atomic number (Z) of 15, it means:
1. **Protons = 15**.
2. **Electrons = 15** (because it's a neutral atom).
3. To find Neutrons: Neutrons = Mass Number - Protons = 31 - 15 = 16.
So, in this scenario, the number of electrons is 15 and the number of neutrons is 16. This combination is found in the first option given.
Ibeere 20 Ìròyìn
H2 S(g) + Cl2 (g) → 2HCl(g) + S(s)
What is the change in oxidation state of sulphur from reactant to product?
Awọn alaye Idahun
To determine the change in oxidation state of sulfur, follow these steps:
In the given reaction:
H2S(g) + Cl2(g) → 2HCl(g) + S(s)
We observe:
Thus, the change in oxidation state of sulfur when moving from the reactants to the products is from **-2** to **0**. This indicates that sulfur is being oxidized.
The correct answer is that the oxidation state of sulfur changes from **-2 to 0**.
Ibeere 21 Ìròyìn
Awọn alaye Idahun
Silver and Gold are classified as noble metals. These metals are known for their resistance to corrosion and oxidation in moist air, unlike most other base metals. They can be found in the earth's crust as free, uncombined elements because they do not easily react with oxygen and other elements to form compounds. This property is what distinguishes noble metals from more reactive or corrosive ones. While the term "natural metals" seems applicable in that they occur naturally, the more precise and widely accepted term for metals like Silver and Gold is "noble metals".
Ibeere 22 Ìròyìn
The constituents of Alnico are Aluminium, Nickel and
Awọn alaye Idahun
Alnico is a type of alloy that is known for its strong magnetic properties. The name "Alnico" comes from the elements it is primarily composed of: Aluminum (Al), Nickel (Ni), and Cobalt (Co). These elements are combined to form an alloy that retains its magnetism well and can operate at high temperatures, making it ideal for applications like electric motors, sensors, and various electronic devices.
While there are different variations of Alnico, the presence of Cobalt (Co) is essential for enhancing the magnetic properties of the alloy. The other elements listed, such as Magnesium (Mg), Manganese (Mn), and Copper (Cu), are not typical core constituents of Alnico. Although trace amounts of other elements like copper may sometimes be included in specific formulations, the primary and most significant component responsible for Alnico's powerful magnetic characteristics is Cobalt (Co).
Ibeere 23 Ìròyìn
The chemical formula for potassiumhexacyanoferrate(II) is
Awọn alaye Idahun
The chemical formula for potassiumhexacyanoferrate(II) is K4Fe(CN)6.
Let's break down the name to understand why:
1. Potassium (K): The compound includes potassium ions. In this case, four potassium ions are present, indicated by the subscript 4 in K4.
2. Hexacyano: The prefix "hexa" means six, which signifies there are six cyanide ions (CN-) in the complex. This is represented as (CN)6.
3. Ferrate (II): The word "ferrate" suggests the presence of iron (Fe). The Roman numeral (II) indicates that the iron is in the +2 oxidation state.
Overall, the complex ion is [Fe(CN)6] with a charge of 4-, so to balance the charge, four potassium ions (each with a charge of +1) are needed, resulting in the formula K4Fe(CN)6.
Ibeere 24 Ìròyìn
127g of sodium chloride was dissolved in 1.0dm3 of distilled water at 250 C . Determine the solubility in moldm−3 of sodium chloride at that temperature. [Na = 23, Cl = 35.5]
Awọn alaye Idahun
To determine the solubility of sodium chloride (NaCl) in mol/dm3 at the given temperature, you need to first calculate the number of moles of NaCl dissolved.
Step 1: Calculate the molar mass of NaCl.
The molar mass of a compound is found by adding the atomic masses of its constituent elements:
- Sodium (Na) has an atomic mass of 23.
- Chlorine (Cl) has an atomic mass of 35.5.
Thus, the molar mass of NaCl = 23 + 35.5 = 58.5 g/mol.
Step 2: Calculate the number of moles of NaCl.
The formula to calculate moles is:
Number of moles = Mass (g) / Molar mass (g/mol)
Given mass of NaCl = 127 g,
Number of moles = 127 g / 58.5 g/mol ≈ 2.17 mol
Step 3: Calculate the solubility in mol/dm3.
Since the sodium chloride is dissolved in 1.0 dm3 of water, the solubility is the same as the number of moles, since the volume is already 1.0 dm3.
Therefore, the solubility of sodium chloride at that temperature is 2.17 mol/dm3.
Rounded to the options given, 2.17 mol/dm3 is approximately equal to 2.2 mol/dm3.
Ibeere 25 Ìròyìn
What would be the order of the electrolytic cell in an industry intending the production of silver plated spoons?
Awọn alaye Idahun
In the process of silver plating a spoon using an electrolytic cell, the correct configuration involves the following:
Cathode: The object to be plated, which in this case is the spoon. In an electrolytic cell, the cathode is where the reduction reaction occurs, and it is the surface on which the metal ions are deposited.
Anode: A rod made of silver. The anode is where oxidation occurs, meaning the silver rod will dissolve into the solution in the form of silver ions. These ions then move towards the cathode to be deposited as a thin layer on the spoon.
Electrolyte: A solution that contains a soluble silver salt (such as silver nitrate, AgNO3). The silver ions from this salt help in the process of transferring the silver from the anode to the cathode.
Thus, the proper order for silver plating a spoon in an electrolytic cell for industrial production is: "Cathode is the spoon; anode is a silver rod; electrolyte is a soluble silver salt."
Ibeere 26 Ìròyìn
An example of highly unsaturated hydrocarbon is
Awọn alaye Idahun
To determine a highly unsaturated hydrocarbon, we must first understand the concept of saturation in hydrocarbons. **Saturated hydrocarbons** are compounds that contain the maximum possible number of hydrogen atoms, single-bonded to carbon atoms, and they are alkanes. **Unsaturated hydrocarbons** have one or more double or triple bonds between carbon atoms, which reduces the number of hydrogen atoms that can be bonded.
Examining the given options:
Based on this analysis, **C2H2** (ethyne) is a highly unsaturated hydrocarbon due to the presence of a **triple bond**. The triple bond signifies a greater level of unsaturation compared to double bonds in hydrocarbons like ethene (C2H4).
Ibeere 27 Ìròyìn
The shape of ammonia molecule is
Awọn alaye Idahun
The shape of the ammonia molecule (NH3) is trigonal pyramidal. To understand why, let's explore the electron and molecular geometry using a simple explanation:
Ammonia consists of one nitrogen (N) atom bonded to three hydrogen (H) atoms. The nitrogen atom has five valence electrons requiring three more electrons to complete its octet. These are acquired by forming covalent bonds with three hydrogen atoms. In addition to the three bonding pairs, there is one lone pair of electrons on the nitrogen atom.
According to the VSEPR (Valence Shell Electron Pair Repulsion) theory, electron pairs, including bonding pairs and lone pairs, repel each other and arrange themselves as far apart as possible to minimize repulsion. In ammonia:
The presence of the lone pair on nitrogen creates a slight distortion, causing the molecule's shape to be trigonal pyramidal rather than perfectly tetrahedral. The lone pair occupies more space and pushes the hydrogen atoms slightly closer together. This results in a pyramidal shape, with nitrogen at the apex, and the three hydrogen atoms forming the base of the pyramid.
The trigonal pyramidal shape of ammonia is a result of this molecular geometry, not to be confused with any of the other options like V-shaped, tetrahedral, or co-planar.
Ibeere 28 Ìròyìn
Concentrated sodium chloride solution is electrolyzed using mercury cathode and graphite anode. The products at the anode and the cathode respectively are
Awọn alaye Idahun
When a concentrated sodium chloride solution is electrolyzed using a mercury cathode and graphite anode, the products are hydrogen gas at the cathode and chlorine gas at the anode
At the anode, 2Cl− → Cl2 + 2e−
At the cathode, 2H+ + 2e− → H2
During the electrolysis, hydrogen and chloride ions are removed from solution whereas sodium and hydroxide ions are left behind in solution. This means that sodium hydroxide is also formed during the electrolysis of sodium chloride solution.
Ibeere 29 Ìròyìn
The IUPAC nomenclature of the complex K4 Fe(CN)6 is
Awọn alaye Idahun
The compound in question is K4[Fe(CN)6]. To name this complex using IUPAC nomenclature, let's break it down into parts:
Next, consider the oxidation state of Fe:
Finally, we consider the oxidation state of the iron. Since calculations show that it is +2, the complex ion is named based on its oxidation state.
Hence, the IUPAC name of this compound is potassium hexacyanoferrate(II).
Ibeere 30 Ìròyìn
Awọn alaye Idahun
When a strong acid reacts with a strong base, the result is the formation of a neutral salt. This reaction is a part of a chemical process known as neutralization.
Let's break it down further:
During a neutralization reaction, the hydrogen ions (H⁺) from the acid combine with the hydroxide ions (OH⁻) from the base to form water (H₂O). Meanwhile, the remaining ions (for example, Na⁺ from NaOH and Cl⁻ from HCl) come together to form a compound known as a salt. This salt does not affect the acidity or basicity of the solution, hence it is considered neutral.
Therefore, the salt formed in such a reaction is a neutral salt, which is what is referred to as a normal salt in the options provided.
Ibeere 31 Ìròyìn
An organic compound contains 53.1% Carbon, 6.2% Hydrogen, 12.4% Nitrogen, and 28.3% Oxygen by mass. What is the molecular formula of the compound if its vapour density is 56.5? [ C =12, H = 1, N = 14, O = 16].
Awọn alaye Idahun
To find the molecular formula of the compound, follow these steps:
1. Determine the Empirical Formula:
Start by assuming you have 100 grams of the compound. This means you have:
Now, convert these masses to moles using their atomic masses (C = 12, H = 1, N = 14, O = 16):
Next, divide each by the smallest number of moles to get the simplest ratio:
This gives us the empirical formula: C5H7NO2.
2. Determine the Molecular Formula:
The molecular formula is a multiple of the empirical formula. To determine this multiple, we need to find the empirical formula mass and compare it with the molar mass derived from the given vapor density.
Calculate the empirical formula mass:
The molar mass can be calculated from the vapor density:
Now, find the ratio of the molar mass to the empirical formula mass:
This ratio is approximately 1, indicating the molecular formula is the same as the empirical formula. Since empirical formulas typically should perfectly match the atomic proportions we derive from experiments, our calculations regarding the assumptions on the vapour and empirical formula mass remains our best match.
Therefore, the molecular formula is C5H7NO2.
Ibeere 32 Ìròyìn
The reaction of hydrogen and chlorine to produce hydrogen chloride gas is explosive in
Awọn alaye Idahun
The reaction between hydrogen and chlorine to produce hydrogen chloride gas is explosive in sunlight. This is because sunlight contains a broad range of electromagnetic radiation, including ultraviolet (UV) light, which is energetic enough to initiate the reaction.
Here is a simplified explanation:
In contrast, other forms of light like diffused light, infrared light, and Raman light do not provide enough energy to initiate this explosive reaction because they lack the necessary UV component found in sunlight.
Ibeere 33 Ìròyìn
The constituent of petroleum fraction used in surfacing road is
Awọn alaye Idahun
Among the options listed, the constituent of petroleum used in surfacing roads is bitumen. Bitumen, also known as asphalt, is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It is the last fraction obtained when crude oil is distilled and is often left over after the lighter components are extracted.
Reasons why bitumen is used for road surfacing:
Due to these properties, bitumen is extensively used in road construction and surfacing, ensuring roads are durable, smooth, and safe for travel.
Ibeere 34 Ìròyìn
A major effect of oil pollution in coastal water is
Awọn alaye Idahun
One of the major effects of oil pollution in coastal water is the destruction of aquatic life.
When oil spills into a water body, it forms a thin layer called a sheen on the surface of the water. This oil layer blocks sunlight from reaching aquatic plants and phytoplankton, inhibiting their ability to perform photosynthesis. As a result, these plants and microorganisms suffer, impacting the entire food chain.
Moreover, oil can coat the feathers of birds and the fur of marine mammals, which affects their insulation and buoyancy, leading to hypothermia, drowning, or inability to fly. Additionally, the toxic components in oil are harmful if ingested, causing internal damage to fish and other marine organisms. These combined effects can lead to significant mortality in aquatic ecosystems, threatening biodiversity and the natural balance of coastal waters.
Therefore, oil pollution can severely affect the health and survival of aquatic life, creating disruptions that can persist for many years.
Ibeere 35 Ìròyìn
The table above shows the formulae of some ions. In which of these compounds is the formula not correct?
Awọn alaye Idahun
To assess the correctness of the chemical formulae for the given compounds, let's break down each compound:
Aluminium Tetraoxosulphate(VI), Al2(SO4)3:
Aluminium ion is denoted as Al3+, and the sulphate ion is SO42-. To balance the charges between the positive and negative ions:
2 x (+3) from aluminium ions = +6
3 x (-2) from sulphate ions = -6
Thus, the charges balance out, making the formula correct.
Calcium Trioxonitrate(V), Ca(NO3)2:
Calcium ion is Ca2+, and the nitrate ion is NO3-. To balance the charges:
1 x (+2) from calcium ion = +2
2 x (-1) from nitrate ions = -2
The charges balance out, therefore, this formula is also correct.
Iron(III) Bromide, Fe3Br:
Iron(III) ion is Fe3+, and bromide ion is Br-. Each iron ion would pair with three bromide ions to balance the charges:
FeBr3, where:
1 x (+3) from iron = +3
3 x (-1) from bromide = -3
The charges balance out in the correct formula which should be FeBr3, making the given formula Fe3Br incorrect.
Potassium Sulphide, K2S:
Potassium ion is K+, and sulphide ion is S2-. To balance the charges:
2 x (+1) from potassium ions = +2
1 x (-2) from sulphide ion = -2
The charges balance out, making this formula correct.
Therefore, the compound with the incorrect formula is Iron(III) Bromide where the proper chemical formula should be FeBr3, not Fe3Br.
Ibeere 36 Ìròyìn
Alkylation of benzene is catalyzed by
Awọn alaye Idahun
Alkylation of benzene is a part of a reaction class called **Friedel-Crafts alkylation**. In this reaction, an alkyl group is transferred to the aromatic benzene ring, making it a more complex molecule. The catalyst used in this process is **aluminium chloride (AlCl3)**.
Here's how the reaction typically works:
In contrast, the other options wouldn't effectively catalyze alkylation of benzene for the following reasons:
Therefore, **aluminium chloride** is the catalyst used for the alkylation of benzene in Friedel-Crafts reactions.
Ibeere 37 Ìròyìn
After breathing in a test tube that contains acidified K2 Cr2 O7 , a man noticed the change in the colour of K2 Cr2 O7 from orange to green. This suggests the presence of
Awọn alaye Idahun
When the acidified potassium dichromate (\(K_2Cr_2O_7\)) solution changes from orange to green, it indicates a chemical reaction is occurring where the chromium in the dichromate ion is being reduced. In this context, acidified \(K_2Cr_2O_7\) is commonly used as an oxidizing agent.
The change in color from orange (dichromate ion) to green (chromium ion) suggests that the dichromate ion is being reduced, and something in the person's breath is being oxidized.
The substances that can be oxidized in the breath are organic compounds, typically those containing functional groups with oxidizable hydrogen atoms or structures.
Therefore, when the color of acidified potassium dichromate changes from orange to green, it suggests the presence of an alkanol.
Ibeere 38 Ìròyìn
Determine the half-life of a first order reaction with constant 4.5 x 10−3 sec−1 .
Awọn alaye Idahun
To determine the half-life of a first-order reaction, you can use the formula:
Half-life (\(t_{1/2}\)) = \(\frac{0.693}{k}\)
where \(k\) is the rate constant of the reaction. For the given problem, the rate constant (\(k\)) is 4.5 x 10-3 s-1.
Substituting the value of \(k\) into the formula, we have:
\(t_{1/2} = \frac{0.693}{4.5 \times 10^{-3}}\)
Perform the division:
\(t_{1/2} = \frac{0.693}{4.5 \times 10^{-3}} \approx 154\) s
Therefore, the half-life of the reaction is 154 seconds.
Ibeere 39 Ìròyìn
For chemical reaction to be spontaneous, ∆G must be
Awọn alaye Idahun
In the context of chemical reactions, the spontaneity of a reaction is determined by the Gibbs Free Energy change, represented by the symbol ΔG. A chemical reaction is considered to be spontaneous if it proceeds on its own without needing continuous external input of energy.
For a reaction to be spontaneous, the value of ∆G must be negative. This is based on the Gibbs Free Energy equation:
ΔG = ΔH - TΔS
Where:
A negative value for ΔG indicates that the process releases energy and will proceed spontaneously. This means the system is moving towards a lower energy and more stable state, naturally favoring the products over the reactants.
In contrast, a positive ΔG indicates that the reaction is non-spontaneous and requires energy input. If ΔG is zero, the system is at equilibrium, meaning there is no net change taking place, but this doesn't indicate spontaneity.
Therefore, in summary, for a reaction to be spontaneous, ∆G must be negative.
Ibeere 40 Ìròyìn
The IUPAC name of the compound above is
Awọn alaye Idahun
To determine the IUPAC name of a compound, follow these steps:
Hence, by following these steps, if the bromo and methyl groups are both attached to the second carbon (lowest numbering possible), the IUPAC name of the compound is "2-bromo, 2-methyl butane."
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?