Inapakia....
|
Bonyeza na Ushikilie kuvuta kuzunguka |
|||
|
Bonyeza Hapa Kufunga |
|||
Swali 1 Ripoti
One of these is not the use of an electroscope
Maelezo ya Majibu
Measuring ionization current in air:
This is typically not a function of an electroscope. While it can detect charge, it does not measure ionization currents, which require specialized equipment like an ionization chamber.
Swali 2 Ripoti
According to kinetic theory of gases, the pressure exerted by the gas on the wall is equal
Maelezo ya Majibu
According to the kinetic theory of gases, the pressure exerted by a gas on the walls of its container relates to the behavior and movement of its molecules. To understand how this pressure forms, let's explore the following essential concepts.
Molecules in a gas move rapidly and randomly in all directions. When these molecules collide with the walls of their container, they exert force due to the change in momentum during these collisions. The frequency and force of these collisions contribute directly to the pressure experienced by the container walls.
The **pressure** exerted by the gas can be described in terms of the rate of change of momentum imparted by the walls per second per unit area. This means that pressure is determined by considering how fast and how much the momentum of the gas molecules changes when they bounce off the container's walls, spread over a specific area and over time. In simpler terms, the faster and more frequently molecules hit the walls, and the higher their change in momentum, the greater the pressure is.
This explanation can be directly associated with the statement: "rate of change of momentum imparted by the walls per second per unit area", which accurately describes the concept of pressure in the context of the kinetic theory of gases.
Swali 3 Ripoti
A light ray passing from air into water at an angle of 30º from the normal in air would
Maelezo ya Majibu
When light passes from one medium to another, such as from air to water, it bends or refracts. This phenomenon is described by Snell's Law, which states: n₁ * sin(θ₁) = n₂ * sin(θ₂), where:
The refractive index of air is approximately 1, and the refractive index of water is approximately 1.33. Given the angle of incidence in air is 30º:
Using Snell's Law:
1 * sin(30º) = 1.33 * sin(θ₂)
You will find:
sin(θ₂) = sin(30º) / 1.33
sin(θ₂) ≈ 0.5 / 1.33
sin(θ₂) ≈ 0.375
Now, solve for θ₂ by taking the inverse sine (arcsin):
θ₂ ≈ arcsin(0.375)
θ₂ ≈ 22.09º
Thus, when a light ray passes from air into water at an angle of 30º from the normal in air, it will make an angle less than 30º from the normal in water, approximately 22.09º. This is because the light ray bends toward the normal as it enters a denser medium (water).
Swali 4 Ripoti
At a pressure of 105 Nm−2 , a gas has a volume of 20m3 . Calculate the volume at 4 x 105 Nm−2 at constant temperature.
Maelezo ya Majibu
In order to solve this problem, we can apply **Boyle's Law**, which states that the **pressure** and **volume** of a gas are inversely proportional at a constant temperature. Mathematically, this is expressed as:
P1V1 = P2V2
Where:
Rearranging the formula to solve for V2:
V2 = (P1V1) / P2
Substituting the given values:
V2 = (105 Nm-2 x 20 m3) / (4 x 105 Nm-2)
By calculating:
V2 = (2100 m3) / 4 x 105
V2 = 5 m3
Therefore, at a pressure of 4 x 105 Nm-2, the volume of the gas is 5 m3.
Swali 5 Ripoti
Under which conditions is work done
Maelezo ya Majibu
In physics, the concept of work is defined as the process of energy transfer that occurs when a force makes an object move. The conditions for work to be done are:
Now, let's evaluate each scenario:
A man supports a heavy load on his head with hands: In this case, although the man is applying a force upward to support the load, the load does not move in the direction of the force he is exerting (upward). Hence, no work is done.
A woman holds a pot of water: Similar to the first scenario, the woman applies an upward force to hold the pot. However, the pot remains stationary, and there is no movement in the direction of the force. Thus, no work is done.
A boy climbs onto a table: Here, as the boy climbs, he applies a force to move himself upward onto the table. The movement is in the direction of the upward force he is applying. Therefore, work is done.
A man pushes against a stationary petrol tanker: In this scenario, although the man is applying a force to the tanker, it does not move. Because there is no movement in the direction of the force, no work is done.
Swali 6 Ripoti
Infra-red thermometers work by detecting the
Maelezo ya Majibu
Infra-red thermometers work by detecting the radiation from the body and converting it to temperature. These thermometers are designed to measure the infrared radiation, also known as heat radiation, emitted by objects. All objects with a temperature above absolute zero emit infrared radiation. The thermometer's sensor captures this radiation and converts it into an electrical signal that can be read as a temperature measurement. This method allows for quick, non-contact temperature readings, which is why infrared thermometers are often used in medical settings, industrial applications, and more.
Swali 7 Ripoti
One main feature of trees in the savanna habitat is the possession of
Maelezo ya Majibu
The main feature of trees in the savanna habitat is the possession of thick, corky bark. The savanna is characterized by a distinct wet and dry season. During the dry season, fires are common as dry grasses and leaves become highly flammable. To adapt to this environmental condition, many trees in the savanna have developed a thick, corky bark which helps protect them against these frequent fires. This bark acts as an insulator, shielding the vital inner tissues of the tree from the heat of the flames. Additionally, this adaptation helps the trees retain moisture, which is crucial during the arid months when water is scarce.
Swali 8 Ripoti
The part of the inner ear that is responsible for hearing is
Maelezo ya Majibu
The part of the inner ear that is responsible for hearing is the cochlea.
The inner ear is a complex structure, and each of its components serves different functions. Let me break it down further:
Thus, the cochlea is the crucial component of the inner ear responsible for converting sound vibrations into nerve signals, making it central to the process of hearing.
Swali 9 Ripoti
The thermometer whose thermometric property is change in volume with temperature is
Maelezo ya Majibu
A thermometer that relies on the **thermometric property** of **change in volume with temperature** is the **Liquid-in-glass thermometer**.
Here is why:
1. **Construction**: A liquid-in-glass thermometer consists of a **glass tube** that encloses a small reservoir filled with a **thermometric liquid**, typically mercury or colored alcohol.
2. **Principle of Operation**: As the **temperature** changes, the **volume of the liquid** inside the tube changes. When the temperature rises, the liquid **expands** and moves up the tube. Conversely, when the temperature decreases, the liquid **contracts** and moves down the tube.
3. **Scale Calibration**: The thermometer has graduations marked along the tube, allowing the user to read the temperature by observing the level of the liquid against these scale markings.
Therefore, the liquid-in-glass thermometer operates on the principle that the **volume of a liquid changes with temperature**, making it the correct answer.
Swali 10 Ripoti
In a cross involving a heterozygous red flower plant (Rr) and a white flowered plant (rr). What is the probability that the offspring will be Rr?
Maelezo ya Majibu
By crossing Rr x rr
We obtain Rr , rr , rr , Rr
⇒ 50% = 12
Swali 11 Ripoti
A blacksmith heated a metal whose cubic expansivity is 3.9 x 10−6 K−1 . Calculate the area expansivity.
Maelezo ya Majibu
To find the area expansivity of a metal when given its cubic expansivity, you should understand the relationship between linear, area, and cubic expansivity.
Cubic expansivity (\( \beta \)) is defined as the fractional change in volume per change in temperature, and is given by the formula:
\[ \Delta V = \beta V \Delta T \]
Area expansivity (\( \alpha_{A} \)) corresponds to the fractional change in area per change in temperature and can be derived from the linear expansivity (\( \alpha \)). The relationship between these expansivities is as follows:
\[ \text{Area Expansivity (\( \alpha_{A} \))} = 2 \times \text{Linear Expansivity (\( \alpha \))} \]
The cubic expansivity (\( \beta \)) is related to the linear expansivity by:
\[ \text{Cubic Expansivity (\( \beta \))} = 3 \times \text{Linear Expansivity (\( \alpha \))} \]
Thus, based on these relationships, we can express the area expansivity in terms of the cubic expansivity:
\(\text{Area Expansivity (\( \alpha_{A} \))} = \frac{2}{3} \times \text{Cubic Expansivity (\( \beta \))}
Given that the cubic expansivity \( \beta \) is \( 3.9 \times 10^{-6} \, \text{K}^{-1} \):
The area expansivity can be calculated as follows:
\[ \text{Area Expansivity (\( \alpha_{A} \))} = \frac{2}{3} \times 3.9 \times 10^{-6} \, \text{K}^{-1} = 2.6 \times 10^{-6} \, \text{K}^{-1} \]
Therefore, the **correct answer** is **2.6 x 10^{-6} K^{-1}**.
Swali 12 Ripoti
288KJ is conducted across two opposite faces of a 3m cube of temperature gradient 90ºCm−1 in 7200s. Calculate the thermal conductivity.
Maelezo ya Majibu
The thermal conductivity of a material is a measure of its ability to conduct heat. It is defined by the formula:
Q = k × A × ΔT/Δx × t
Where:
We are given:
The cube has each side measuring 3 meters, so the area A of one face (since heat is conducted across two opposite faces, effectively using one face area for calculation) is:
A = 3m × 3m = 9 m2
Now, we need to solve for k (thermal conductivity):
Q = k × A × ΔT/Δx × t
288,000 J = k × 9 m2 × 90 ºC/m × 7,200 s
k = 288,000 / (9 × 90 × 7,200)
Calculate the denominator:
9 × 90 × 7,200 = 5,832,000
Therefore:
k = 288,000 / 5,832,000 ≈ 0.0493 W/mK
This converts approximately to 4.93 × 10-2 W/mK.
Therefore, the correct answer is 4.9 × 10-2 W/mK.
Swali 13 Ripoti
Rainbow is formed when sunlight undergoes
Maelezo ya Majibu
A rainbow is formed through a combination of three processes: reflection, refraction, and dispersion. Let's break down each process to understand how a rainbow forms:
1. Refraction: When sunlight enters a raindrop, it bends or changes direction. This bending of light is known as **refraction**. Different colors of sunlight bend by different amounts because they have different wavelengths.
2. Reflection: Once inside the raindrop, the light gets reflected off the inside surface of the drop. This reflection sends the light back out of the raindrop at different angles.
3. Dispersion: As the light exits the raindrop, it bends again (refraction). Because each color bends by a different amount, the sunlight is spread out into its component colors, creating a spectrum. This spreading into a spectrum is called **dispersion**.
All three processes contribute to the formation of a rainbow. The combination of **refraction, reflection, and dispersion** results in the beautiful arc of colors that we see in the sky.
Swali 14 Ripoti
If the displacement of a car is proportional to the square of time, then the car is moving with
Maelezo ya Majibu
When we say that the displacement of a car is proportional to the square of time (d ∝ t²), it indicates a relationship between displacement (d) and time (t). This relationship is characteristic of motion where there is constant acceleration. Essentially, it means that the car is not moving at a constant speed (velocity) but is accelerating at a constant rate.
The mathematical representation of this scenario can be expressed using the formula for displacement under uniform acceleration:
d = ut + (1/2)at².
In this equation:
When the displacement is directly proportional to the square of time (d ∝ t²), it implies that the second term of the equation, which contains the (1/2)at² part, dominates the relationship. Thus, the initial velocity (u) is typically zero or negligible, making the entire displacement dependent on how time squared interacts with acceleration.
Therefore, the car is moving with uniform acceleration.
Swali 15 Ripoti
Use the diagram above to answer the question that follows
The diagram above is
Maelezo ya Majibu
The diagram in the image represents the urinary system, as indicated by the correct answer. The urinary system includes the kidneys, ureters, bladder, and urethra, which are responsible for filtering blood and excreting waste in the form of urine.
Kidneys – Filter waste and excess fluids from the blood to form urine.
Ureters – Tubes that carry urine from the kidneys to the bladder.
Urinary Bladder – Stores urine before it is expelled from the body.
Urethra – A tube that allows urine to exit the body.
This system plays a crucial role in maintaining the body's fluid balance and removing waste products.
Swali 16 Ripoti
Bifocal lens is used to correct the eye defect of
Maelezo ya Majibu
Bifocal lenses are primarily used to correct the eye defect known as presbyopia. As people age, the lens of the eye naturally loses its flexibility, making it difficult to focus on objects that are close up. This condition is known as presbyopia. A bifocal lens is designed with two different optical powers to accommodate this need. The upper part of the lens is usually crafted for distance vision, while the lower segment is designed for near vision tasks, such as reading.
Astigmatism is a different eye condition caused by irregular curvature of the cornea or lens, resulting in blurred or distorted vision at all distances. This condition is typically corrected with cylindrical lenses rather than bifocals.
Hypermetropia, commonly known as farsightedness, is a condition where distant objects can be seen more clearly than near ones. Simple convex lenses are usually used for this correction.
Myopia, or nearsightedness, is a condition where nearby objects are seen clearly, while distant objects appear blurry. Concave lenses are generally used to correct this condition.
In summary, bifocal lenses are specifically designed to address the challenges of focusing at different distances simultaneously, making them ideal for managing presbyopia.
Swali 17 Ripoti
The velocity ratio of an inclined plane at 60º to the horizontal is
Maelezo ya Majibu
The concept of an inclined plane is all about simplifying the forces involved in moving or holding a load. The **velocity ratio (VR)** for an inclined plane is defined as the ratio of the distance moved by the effort to the distance moved by the load. This can also be expressed in terms of the lengths involved in the triangle made by the inclined plane.
For an inclined plane placed at an angle **θ** to the horizontal, the velocity ratio is given by the formula:
VR = 1/sin(θ)
Given that the inclined plane is at an angle of **60º**:
First, find the sine of 60º:
sin(60º) = √3/2 (approximately 0.866)
Now, substitute this value into the formula for VR:
VR = 1/sin(60º) ≈ 1/0.866 ≈ 1.155
The **velocity ratio** for an inclined plane at **60º** to the horizontal is **approximately 1.155**.
Swali 18 Ripoti
A body is pulled on a horizontal surface with a rope inclined at 30º to the vertical. If the effective force pulling the body along the horizontal surface is 15N, calculate the tension on the rope.
Maelezo ya Majibu
In this problem, the tension in the rope results in a force that acts to pull the body along the horizontal surface. The rope is inclined at 30º to the vertical, which means it makes an angle of 60º with the horizontal since the total angle between vertical and horizontal is 90º.
To find the tension in the rope, we first understand that the component of the tension force acting along the horizontal surface is given by the formula:
F_horizontal = Tension * cos(θ)
Where:
Given that F_horizontal = 15N, we substitute into the equation:
15N = Tension * cos(60º)
We know that cos(60º) = 0.5, therefore:
15N = Tension * 0.5
To find the Tension, divide both sides of the equation by 0.5:
Tension = 15N / 0.5
Tension = 30N
Therefore, the tension in the rope is 30N.
Swali 19 Ripoti
The friction due to air mass can be reduced by
Maelezo ya Majibu
Friction due to air mass, also known as air resistance or drag, can be reduced by a concept called **streamlining**.
**Streamlining** refers to the shaping of an object in such a way that it allows air to flow smoothly around it, minimizing turbulence and reducing drag. When air flows smoothly over an object without much disturbance, there is less resistance, and the object can move more easily through the air.
Think of it like how a bullet or a fast-moving car is designed. They have a sleek, smooth shape that cuts through the air with minimal effort. This principle is applied in designing cars, airplanes, and even boats to enhance their efficiency and speed by reducing the friction with the air or water they move through.
Swali 20 Ripoti
If the velocity ratio of a machine is 4, what does it mean?
Maelezo ya Majibu
The velocity ratio of a machine is a concept used to explain how much the machine is expected to amplify the input motion. If the velocity ratio of a machine is 4, it means that the distance moved by the effort is 4 times greater than the distance moved by the load.
To understand this concept better, consider what a machine does: it allows you to apply a small effort over a longer distance to move a heavy load over a shorter distance. In this scenario, if the velocity ratio is 4, then for every 4 meters (or units of distance) you exert effort, the load will move 1 meter (or unit of distance).
Swali 21 Ripoti
The property by which a material returns to its original shape after the removal of force is called
Maelezo ya Majibu
The property by which a material returns to its original shape after the removal of force is called Elasticity.
Let's break it down:
Elasticity: This is a property of a material that allows it to return to its original shape or size after the force that caused deformation is removed. Think of a rubber band—you can stretch it, but once you let it go, it snaps back to its initial shape.
Ductility: This property refers to a material's ability to be stretched into a wire. For example, materials like copper are ductile because they can be drawn into thin wires without breaking.
Malleability: This is a material's ability to withstand deformation under compressive stress. It is the property that allows metals to be hammered or rolled into thin sheets. Gold is a good example of a malleable metal.
Plasticity: This property describes the material's ability to undergo permanent deformation without breaking. When a plastic region is reached, the material will not return to its original shape after the removal of force.
Therefore, when we speak of a material returning to its original shape after the removal of force, we are specifically referring to Elasticity.
Swali 22 Ripoti
A thick glass tumbler cracks when boiling water is poured into it because
Maelezo ya Majibu
When boiling water is poured into a thick glass tumbler, the inner surface of the glass is suddenly exposed to a much higher temperature compared to the outer surface. Glass is a poor conductor of heat, which means it does not transfer heat quickly. As a result, the inside of the tumbler becomes hot and attempts to **expand quickly**, while the outside remains cooler and does not expand at the same rate.
**This uneven expansion** creates tension between the inner and outer layers of the glass. The inner surface tries to expand but is constrained by the cooler, rigid outer surface, which isn't expanding as much or as quickly. This stress and tension can lead to cracking.
Therefore, the correct reason a thick glass tumbler cracks when boiling water is poured into it is because **the inside expands more rapidly than the outside.**
Swali 23 Ripoti
Convert 60ºC to degree Fahrenheit
Maelezo ya Majibu
To convert temperatures from Celsius to Fahrenheit, we use the formula:
F = (C × 9/5) + 32
Here, F represents the temperature in Fahrenheit, and C represents the temperature in Celsius.
Let's use this formula to convert 60ºC to Fahrenheit:
F = (60 × 9/5) + 32
First, multiply 60 by 9/5:
60 × 9/5 = 108
Next, add 32 to 108:
108 + 32 = 140
Therefore, 60ºC is equal to 140ºF.
Swali 24 Ripoti
The mechanical advantage of the machine shown above
Maelezo ya Majibu
Mechanical advantage of a machine = LOADEFFORT
In this case of a wedge, we can consider the dimensions given:
Load distance (height of the machine): 15 cm
Effort distance (movement of the effort): 0.5 cm
M.A = 150.5 = 30.0
Swali 25 Ripoti
Calculate the magnetic force on an electron in a magnetic field of flux density 10T, with a velocity of 3 x 107 m/s at 60º to the magnetic field (e = 1.6 x 10−19 C)
Maelezo ya Majibu
The magnetic force on an electron in a magnetic field (F) = q v Bsinθ
B = 10T, q = 3 x 107 m/, θ = 60º and q = 1.6 x 10−19 C
F = 1.6 x 10−19 x 3 x 107 x 10 x sin 60º ≊ 4.162 × 10−11 N
Swali 26 Ripoti
I
6 X + 6 H2 O → C6 H12 O6 + 6O2
III chlorophyll II IV
Use the diagram above to answer question that follows
The part labelled I is
Maelezo ya Majibu
The part labelled I in the diagram refers to **sunlight**.
Here's a simple explanation:
The given chemical equation is a representation of **photosynthesis**, a process by which green plants, algae, and some bacteria convert light energy, typically from the sun, into chemical energy stored in glucose (C6H12O6) and release oxygen (O2) as a by-product.
In the context of the equation:
- **6CO2 (Carbon Dioxide) + 6H2O (Water) → C6H12O6 (Glucose) + 6O2 (Oxygen)**
The arrow indicates the transformation that occurs during the process. The **chlorophyll** (labelled in the diagram) indicates the presence of chlorophyll pigments in the chloroplasts of plant cells which are essential for **absorbing sunlight**.
Since **sunlight** is the source of energy that powers this transformation, it is the correct component for the part labelled I in the diagram.
Swali 27 Ripoti
If a charge ion goes through a combined electric field E and magnetic field B, the resultant emergent velocity of the ion is
Maelezo ya Majibu
The resultant emergent velocity of a charged ion moving through combined electric and magnetic fields can be derived from the condition where the electric force equals the magnetic force. This gives us the formula for the velocity v:
q E = qvB
v = EB (q will cancel out)
NOTE: When both fields are present, for the ion to move without deflection, the electric force must equal the magnetic force.
Swali 28 Ripoti
A cell of internal resistance of 2Ω supplies current through a resistor, X if the efficiency of the cell is 75%, find the value of X.
Maelezo ya Majibu
To solve the problem, let's first understand the concept of efficiency in this context. Efficiency refers to the ratio of the useful power output to the total power output of a system. In simpler terms, it tells us how much of the power provided by the cell is being effectively used by the resistor, X.
Given that the cell has an internal resistance (r) of 2Ω and we need the efficiency to be 75%, we will follow these steps:
Efficiency (%) = (R / (R + r)) * 100
Where:
According to the problem, efficiency is 75%, so:
(X / (X + 2)) * 100 = 75
First, let’s eliminate the percentage by dividing both sides by 100:
(X / (X + 2)) = 0.75
Now, let's solve for X:
X = 0.75 * (X + 2)
X = 0.75X + 1.5
0.25X = 1.5
X = 1.5 / 0.25
X = 6 Ω
Hence, for the cell to have an efficiency of 75%, the value of the resistor X must be 6Ω.
Swali 29 Ripoti
I It wets glass
II It needs to be coloured
III It has a low density
Water is not suitable for use as a thermometric liquid because
Maelezo ya Majibu
Water is not suitable for use as a thermometric liquid because:
a) It wets glass: This can cause issues with reading the level of the liquid.
b) It needs to be coloured: Water is typically clear, making it difficult to see the level without coloring.
c) It has a low density: This can affect the sensitivity and accuracy of the thermometer.
Swali 30 Ripoti
Inbreeding is highly discouraged in humans because it may
Maelezo ya Majibu
Inbreeding is the process where closely related individuals, like cousins or siblings, mate and produce offspring. **This practice is highly discouraged in humans for several reasons, but a significant concern is the potential for an outbreak of hereditary diseases.**
Here’s why inbreeding is problematic:
Therefore, **to promote genetic diversity and reduce the risk of hereditary diseases in offspring, inbreeding is discouraged in human populations**. This way, offspring are less likely to inherit harmful genetic combinations that can lead to health problems.
Swali 31 Ripoti
Bile is a greenish alkaline liquid which is stored in the
Maelezo ya Majibu
Bile is a greenish alkaline liquid that plays a crucial role in the digestive process, particularly in the digestion and absorption of fats. It is produced in the liver, but it is not stored there. Instead, the bile is transported to a small organ where it is concentrated and stored until the body needs it for digestion. This organ is the gall bladder.
The gall bladder stores the bile and releases it into the small intestine when food, especially fatty food, enters the digestive tract. This helps in breaking down the fats into smaller droplets, making it easier for enzymes to digest them.
To sum up, the gall bladder is the organ responsible for storing bile.
Swali 32 Ripoti
The quantity of heat required to melt ice of 0.2 kg whose specific latent heat is 3.4 x 105 J/Kg is
Maelezo ya Majibu
To determine the quantity of heat required to melt ice, we use the formula for latent heat:
Q = m × L,
where:
For this problem, we have:
Now, substitute these values into the formula:
Q = 0.2 kg × 3.4 × 105 J/kg
Calculate the product:
Q = 0.68 × 105 J
To express this in standard scientific notation, it can be rewritten as:
Q = 6.8 × 104 J
Thus, the quantity of heat required to melt 0.2 kg of ice is 6.8 × 104 J.
Swali 33 Ripoti
Electrolysis can be investigated using
Maelezo ya Majibu
When investigating electrolysis, the most relevant instrument from the list provided is the Voltameter. This is because the voltameter is specifically designed to measure the amount of substance that is deposited or consumed at electrodes during the electrolysis of an electrolyte. It functions based on the chemical change associated with the electric current passing through the electrolyte.
Here is a simple explanation of how electrolysis works and why a voltameter is useful:
Electrolysis is the process of using electricity to cause a chemical reaction, which is usually a decomposition reaction. This involves passing an electric current through an electrolyte (a substance containing free ions). These ions migrate towards electrodes, resulting in chemical changes. The key aspect to measure during electrolysis is the amount of material (e.g., metal or gas) that is deposited at the electrodes.
The Voltameter helps in understanding electrolysis because:
Voltmeter, Ammeter, and Galvanometer are not used primarily for investigating electrolysis:
Swali 34 Ripoti
Maelezo ya Majibu
When you insert a sheet of an insulating material between the plates of an air capacitor, the capacitance will increase.
Here's why:
C = ε₀ * (εr) * (A/d)
Therefore, inserting an insulating material as a dielectric enhances the capacitor's ability to store charge, ultimately resulting in an increase in capacitance.
Swali 35 Ripoti
The efficiency of a cell with internal resistance of 2Ω supply current to a 6Ω resistor is
Maelezo ya Majibu
To determine the efficiency of a cell with an internal resistance of 2 Ω while supplying current to a 6 Ω resistor, we can use the concept of power dissipation. Efficiency in this context is the ratio of the power delivered to the external resistor to the total power supplied by the cell. It can be calculated using the formula:
Efficiency (%) = (Power across load resistor / Total power output by cell) × 100
Let's break it down step by step:
The efficiency of the cell when supplying current to a 6 Ω resistor with an internal resistance of 2 Ω is 75%.
Swali 36 Ripoti
An object is placed 25cm in front of a convex mirror has its image formed 5cm behind the mirror. what is the focal length of the convex mirror
Maelezo ya Majibu
Object distance (u) = -25 cm (negative because the object is in front of the mirror)
Image distance (v) = +5 cm (positive because the image is behind the convex mirror)
Using 1f = 1u + 1v
1f = 1−25 + 15
f = 254 = 6.250cm.
Swali 37 Ripoti
A refrigerator uses 150W. If it is kept on for 336 hours non-stop, what is the energy consumed in KWh?
Maelezo ya Majibu
To calculate the energy consumption of an appliance, you can use the formula:
Energy (in KWh) = Power (in kW) × Time (in hours)
First, convert the power rating of the refrigerator from watts (W) to kilowatts (kW). Since 1 kW is equal to 1000 W, you can convert 150W to kilowatts by dividing by 1000:
150 W = 0.150 kW
Next, calculate the energy consumed over the period the refrigerator is kept on, which is 336 hours. Use the formula:
Energy = 0.150 kW × 336 hours
Now, perform the multiplication:
Energy = 50.40 kWh
Therefore, when the refrigerator is kept on for 336 hours non-stop, it consumes 50.40 kWh of energy. This is the correct choice.
Swali 38 Ripoti
In a solar panel, solar beam is concentrated by using
Maelezo ya Majibu
In a solar panel system, the type of mirror used to concentrate solar beams is the Concave Mirror.
Explanation:
A concave mirror is a type of mirror that curves inward, like the inside of a bowl. This shape is very effective at focusing light. When sunlight hits a concave mirror, the mirror's shape causes the light beams to converge, or come together, at a single point known as the focus. This concentrated light can then be used to generate heat or electricity more efficiently.
Why not the others?
A convex mirror curves outward and disperses light beams rather than concentrating them.
A plane mirror has a flat surface and reflects light at the same angle it receives it, meaning it doesn't concentrate the beams.
A triangular mirror is not typically used in solar applications for concentrating light as its shape is not conducive to focusing beams effectively.
Therefore, a concave mirror is best suited for concentrating solar beams in solar panel systems.
Swali 39 Ripoti
The bursting of water pipes during very cold weather, when the water in the pipes form ice could be attributed to
Maelezo ya Majibu
The bursting of water pipes during very cold weather is primarily attributed to the expansion of water on freezing.
Here's why this happens:
1. **Normal water behavior below freezing:** Typically, when most substances freeze, they contract because the molecules get closer together. However, water behaves differently due to its unique molecular structure. As water freezes, it forms a crystalline structure that makes ice less dense than liquid water, causing it to expand.
2. **Effect of expansion:** When water inside a pipe freezes, it expands. This expansion puts tremendous pressure on the pipe walls because the solid ice takes up more space than the liquid water. Most pipes are rigid and do not have enough room to accommodate the expanded volume of ice.
3. **Resulting pressure:** The increased pressure caused by the expanding ice can cause the pipe to crack or burst, especially if there is no other outlet for the water or ice to expand into.
In summary, pipes burst during cold weather primarily due to the expansion of water as it freezes, which creates pressure that the pipe cannot withstand. This phenomenon is due to the unique property of water where it expands upon freezing, unlike most other substances which contract in their solid form.
Swali 40 Ripoti
Using the circuit above, at resonance
Maelezo ya Majibu
To understand the concept of resonance in an electrical circuit, it is crucial to know that resonance occurs when the inductive reactance and capacitive reactance are equal in magnitude. This typically happens in a series RLC (Resistor, Inductor, Capacitor) circuit. At resonance, the impedance of the circuit is purely resistive, meaning the circuit behaves as if it only contains a resistor. As a result, the voltages across the inductor and capacitor can be compared at resonance.
In this particular situation, the voltage across the inductor (VL) and the voltage across the capacitor (VC) are of interest due to their roles in resonance:
Thus, the correct expression of interest in relation to resonance is VL = VC, which indicates that the voltage across the inductor is equal in magnitude but opposite in phase to the voltage across the capacitor.
Je, ungependa kuendelea na hatua hii?