Inapakia....
Bonyeza na Ushikilie kuvuta kuzunguka |
|||
Bonyeza Hapa Kufunga |
Swali 1 Ripoti
Which of the following is not a part of model rocket?
Maelezo ya Majibu
When it comes to a model rocket, it is crucial to understand the different parts that make up the rocket and their functions:
Now, “Not recovery devices” is listed among the options. A recovery device is actually a part of a model rocket system. Common recovery devices include parachutes or streamers that deploy after the rocket reaches its peak altitude, allowing it to return safely to the ground. Such devices are indeed part of a model rocket design.
Therefore, the option “Not recovery devices” itself is not recognized as a part of a model rocket. Instead, the sentence is stating that they are not part of the main components, which implies it's indicative rather than being the name of a component. Hence, it does not pertain to a single component like the body tube, nose cone, or fins.
Swali 2 Ripoti
The power of a convex lens of focal length 20cm is
Maelezo ya Majibu
The power of a lens is a measure of its ability to converge or diverge light. It is defined as the reciprocal (or inverse) of the focal length of the lens. The formula for calculating the power (P) of a lens in diopters (D) is given by:
P = 1/f
where:
In this case, the focal length given is 20 cm. To apply the formula, we first need to convert this focal length into meters because the diopter is the reciprocal of the focal length in meters:
f = 20 cm = 0.20 m
Now, substitute the focal length in meters into the formula for power:
P = 1 / 0.20
P = 5.00 D
Thus, the power of the convex lens is 5.00 diopters. This indicates that the lens is capable of converging light at a distance of 5.00 meters.
Swali 3 Ripoti
A force of 10N extends a spring of natural length 1m by 0.02m, calculate the length of the spring when the applied force is 40N.
Maelezo ya Majibu
To solve this problem, we will use Hooke's Law. Hooke's Law states that the force needed to extend or compress a spring by some distance is proportional to that distance. Mathematically, it is represented as:
F = k * x
where:
Firstly, we need to find the spring constant k. We know that a force of 10N extends the spring by 0.02m. Therefore, using Hooke's Law:
10N = k * 0.02m
From this, we can solve for k:
k = 10N / 0.02m = 500N/m
Now that we have determined the spring constant, let's calculate the extension caused by a force of 40N:
Using Hooke's Law again:
F = k * x
40N = 500N/m * x
Solving for x:
x = 40N / 500N/m = 0.08m
This means that the spring is extended by 0.08m when a force of 40N is applied. Therefore, the length of the spring (natural length plus extension) becomes:
1.00m + 0.08m = 1.08m
Thus, the **length** of the spring when the applied force is 40N is 1.08m.
Swali 4 Ripoti
Calculate the magnetic force on an electron in a magnetic field of flux density 10T, with a velocity of 3 x 107 m/s at 60º to the magnetic field (e = 1.6 x 10−19 C)
Maelezo ya Majibu
The magnetic force on an electron in a magnetic field (F) = q v Bsinθ
B = 10T, q = 3 x 107 m/, θ = 60º and q = 1.6 x 10−19 C
F = 1.6 x 10−19 x 3 x 107 x 10 x sin 60º ≊ 4.162 × 10−11 N
Swali 5 Ripoti
The unit of impedance is
Maelezo ya Majibu
The unit of impedance is Ohm, which is symbolized by the Greek letter Ω (Omega). In electrical circuits, impedance (Z) is a measure of opposition that a circuit offers to the passage of electric current when a voltage is applied. It is similar to resistance but extends to alternating currents (AC) and contains the effects of resistance as well as reactance (which accounts for capacitors and inductors).
Just like resistance, the unit of impedance is the ohm because they measure similar concepts; however, impedance also accounts for phase shifts between voltage and current, which are not considered in simple resistance. Ohm's Law is used in AC circuits as Z = V/I, where Z is impedance, V is voltage, and I is current. This relationship shows why the unit of impedance is the same as that of resistance.
Swali 6 Ripoti
The part of the inner ear that is responsible for hearing is
Maelezo ya Majibu
The part of the inner ear that is responsible for hearing is the cochlea.
The inner ear is a complex structure, and each of its components serves different functions. Let me break it down further:
Thus, the cochlea is the crucial component of the inner ear responsible for converting sound vibrations into nerve signals, making it central to the process of hearing.
Swali 7 Ripoti
The energy stored in the above capacitor is
Maelezo ya Majibu
The energy stored in the capacitor = 12 q2C
Where C = 2F, q = 3C
= 12 322 = 94 = 2.25J
Swali 8 Ripoti
The distance between two successive crests of a water wave is 0.25m. If a particle on the surface of the water makes four complete vertical oscillations in one second. Calculate the speed of the wave.
Maelezo ya Majibu
To calculate the speed of the wave, we need to understand some fundamental wave properties: **wavelength**, **frequency**, and **wave speed**.
1. **Wavelength (\( \lambda \))**: The wavelength is the distance between two successive crests of a wave. In this case, the wavelength is given as **0.25 meters**.
2. **Frequency (\( f \))**: Frequency is the number of complete oscillations or cycles that occur per second. It is given that a particle on the surface of the water makes **four complete vertical oscillations in one second**. So, the frequency is **4 Hz (hertz)**.
3. **Wave Speed (\( v \))**: The speed of a wave is calculated using the formula:
\( v = f \times \lambda \)
Where:
\( v \) is the wave speed,
\( f \) is the frequency, and
\( \lambda \) is the wavelength.
Substitute the given values into the formula:
\( v = 4 \text{ Hz} \times 0.25 \text{ m} \)
\( v = 1 \text{ m/s} \)
Therefore, the **speed of the wave** is 1 m/s.
Swali 9 Ripoti
An example of a non-rechargeable cell is
Maelezo ya Majibu
A non-rechargeable cell, commonly known as a primary cell, is a type of chemical battery that is designed to be used once until the chemical reactions that produce electricity are exhausted. After this point, the cell cannot be reversed or recharged.
In the given examples, the dry leclanche cell is a well-known example of a non-rechargeable cell. It is commonly used in everyday devices like remote controls, wall clocks, and torches. This cell type utilizes zinc and manganese dioxide as electrodes and relies on a moist paste of ammonium chloride for the electrolyte.
The other examples, such as nickel iron, mercury cadmium, and lead-acid, involve rechargeable cells (secondary cells) that are specifically designed to endure multiple charges and discharges throughout their useful life. Thus, unlike the dry leclanche cell, these can be recharged after use.
Therefore, the dry leclanche cell is an ideal example of a non-rechargeable cell because it can only be used once. After depletion, it cannot be recharged or reused.
Swali 10 Ripoti
The efficiency of a cell with internal resistance of 2Ω supply current to a 6Ω resistor is
Maelezo ya Majibu
To determine the efficiency of a cell with an internal resistance of 2 Ω while supplying current to a 6 Ω resistor, we can use the concept of power dissipation. Efficiency in this context is the ratio of the power delivered to the external resistor to the total power supplied by the cell. It can be calculated using the formula:
Efficiency (%) = (Power across load resistor / Total power output by cell) × 100
Let's break it down step by step:
The efficiency of the cell when supplying current to a 6 Ω resistor with an internal resistance of 2 Ω is 75%.
Swali 11 Ripoti
The value of R in the above circuit to make the galvanometer measure 2A is
Maelezo ya Majibu
Given: Ig = 50mA = 0.05A, I to be measured = 2A, r = 2Ω , Is = I - Ig = 2 - 0.05 = 1.95A
Shunt(R) = IgIs x r
R = 0.051.95 x 10 = 0.2564Ω
Swali 12 Ripoti
A practical application of total internal reflection is found in
Maelezo ya Majibu
A practical application of total internal reflection is found in fiber optics.
To understand this, let's break it down:
When light travels from one medium to another (such as from glass to air), it changes direction. This is known as refraction. However, there is a phenomenon called total internal reflection which occurs when light is traveling within a denser medium towards a less dense medium (like from glass to air) and hits the boundary at an angle greater than a certain critical angle. Instead of passing through, the light is completely reflected back into the denser medium.
Fiber optics technology makes use of this principle. In fiber optics, light is transmitted along the core of a thin glass or plastic fiber. The core is surrounded by another layer called the cladding. This cladding has a lower refractive index than the core, which facilitates total internal reflection. As a result, the light continuously reflects internally along the length of the fiber, allowing it to travel long distances with minimal loss.
This property is harnessed in various applications such as in high-speed telecommunication systems, medical equipment like endoscopes, and other technologies that require the transmission of data over long distances with high efficiency.
Swali 13 Ripoti
In a solar panel, solar beam is concentrated by using
Maelezo ya Majibu
In a solar panel system, the type of mirror used to concentrate solar beams is the Concave Mirror.
Explanation:
A concave mirror is a type of mirror that curves inward, like the inside of a bowl. This shape is very effective at focusing light. When sunlight hits a concave mirror, the mirror's shape causes the light beams to converge, or come together, at a single point known as the focus. This concentrated light can then be used to generate heat or electricity more efficiently.
Why not the others?
A convex mirror curves outward and disperses light beams rather than concentrating them.
A plane mirror has a flat surface and reflects light at the same angle it receives it, meaning it doesn't concentrate the beams.
A triangular mirror is not typically used in solar applications for concentrating light as its shape is not conducive to focusing beams effectively.
Therefore, a concave mirror is best suited for concentrating solar beams in solar panel systems.
Swali 14 Ripoti
The velocity ratio of an inclined plane at 60º to the horizontal is
Maelezo ya Majibu
The concept of an inclined plane is all about simplifying the forces involved in moving or holding a load. The **velocity ratio (VR)** for an inclined plane is defined as the ratio of the distance moved by the effort to the distance moved by the load. This can also be expressed in terms of the lengths involved in the triangle made by the inclined plane.
For an inclined plane placed at an angle **θ** to the horizontal, the velocity ratio is given by the formula:
VR = 1/sin(θ)
Given that the inclined plane is at an angle of **60º**:
First, find the sine of 60º:
sin(60º) = √3/2 (approximately 0.866)
Now, substitute this value into the formula for VR:
VR = 1/sin(60º) ≈ 1/0.866 ≈ 1.155
The **velocity ratio** for an inclined plane at **60º** to the horizontal is **approximately 1.155**.
Swali 15 Ripoti
What is the least possible error encountered when taking measurement with a metre rule?
Maelezo ya Majibu
A standard meter rule has markings that are usually every millimeter (1 mm). The least count, which is the smallest measurement that can be accurately read, is often 1 mm.
The least possible error is generally considered to be half of the smallest division, so it is ±0.05cm (or ±0.5mm).
Swali 16 Ripoti
Use the diagram above to answer the question that follows
The diagram above is
Maelezo ya Majibu
The diagram in the image represents the urinary system, as indicated by the correct answer. The urinary system includes the kidneys, ureters, bladder, and urethra, which are responsible for filtering blood and excreting waste in the form of urine.
Kidneys – Filter waste and excess fluids from the blood to form urine.
Ureters – Tubes that carry urine from the kidneys to the bladder.
Urinary Bladder – Stores urine before it is expelled from the body.
Urethra – A tube that allows urine to exit the body.
This system plays a crucial role in maintaining the body's fluid balance and removing waste products.
Swali 17 Ripoti
The energy in a moving car is an example of
Maelezo ya Majibu
The energy in a moving car is an example of kinetic energy.
To explain simply, **energy** is the ability to do **work** or cause **change**. There are different forms of energy, and **kinetic energy** is one of them. It is defined as the energy possessed by an object due to its motion.
When a car is moving, it possesses **kinetic energy** because its components are in **motion**. This motion energy allows the car to do tasks, such as transporting people or goods from one place to another. The faster the car moves, the greater its **kinetic energy**, and thus it can make a larger impact or do more work.
In contrast, energy forms like **mechanical energy** is a combination of both kinetic and potential energy; **electrical energy** is associated with electrical charge movement, while **potential energy** is related to the position or condition of an object (like a car parked on a hill). Therefore, the specific type of energy from a moving car is **kinetic energy**.
Swali 18 Ripoti
Inbreeding is highly discouraged in humans because it may
Maelezo ya Majibu
Inbreeding is the process where closely related individuals, like cousins or siblings, mate and produce offspring. **This practice is highly discouraged in humans for several reasons, but a significant concern is the potential for an outbreak of hereditary diseases.**
Here’s why inbreeding is problematic:
Therefore, **to promote genetic diversity and reduce the risk of hereditary diseases in offspring, inbreeding is discouraged in human populations**. This way, offspring are less likely to inherit harmful genetic combinations that can lead to health problems.
Swali 19 Ripoti
The food nutrient with the highest energy value is
Maelezo ya Majibu
Fat is the food nutrient with the highest energy value, providing 9 calories per gram, while carbohydrates and proteins provide 4 calories per gram.
Fat is the body's most concentrated source of energy, providing more than twice as much potential energy as carbohydrates or proteins.However, carbohydrates burn fastest in metabolism. Fats are a type of lipid. Lipids are a group of organic compounds that are insoluble in water but soluble in organic solvents. Fats are solid at room temperature, while oils are liquid at room temperature.
Therefore, the correct answer is option C.
Swali 20 Ripoti
The capacitance of a capacitor, C, is inversely proportional to
Maelezo ya Majibu
The capacitance of a capacitor is primarily determined by three key factors: the area of the plates, the distance between the plates, and the dielectric material used between the plates.
Capacitance (C) is calculated using the formula:
\(C = \frac{\varepsilon A}{d}\)
Where:
Let's analyze the relationship:
In summary, the capacitance of a capacitor is inversely proportional to the distance between the plates. Hence, you increase capacitance by decreasing the distance between the plates.
Swali 21 Ripoti
The dimension of power is
Maelezo ya Majibu
The dimension of power in physics is expressed in terms of the base units of mass (M), length (L), and time (T). Power is the rate at which work is done or energy is transferred over time, and it has the unit of watt (W) which is equivalent to one joule per second.
To derive the dimension of power:
1. Work has the dimension of energy, which is force applied over a distance. The dimension of work (or energy) is M L2 T-2 because force has the dimension M L T-2 and distance adds another L.
2. Since power is work done per unit time, you would divide the dimension of work by time (T).
Thus, the dimensional formula for power is:
M L2 T-3
Swali 22 Ripoti
When a cell of e.m.f 3.06V is connected, the balance of a potentiometer is 75cm, Calculate the new balance of a cell of e.m.f 2.295V
Maelezo ya Majibu
To solve this problem, we first need to understand the principle behind a potentiometer. A potentiometer is a device used to measure the electromotive force (e.m.f) of a cell by comparing it with a known voltage. The balance length on a potentiometer corresponds to a proportional measurement of the e.m.f.
Let's denote:
- \( V_1 \): the e.m.f of the first cell = 3.06V
- \( l_1 \): the balance length for the first cell = 75 cm
- \( V_2 \): the e.m.f of the second cell = 2.295V
- \( l_2 \): the balance length for the second cell (which we need to find)
The basic relationship for a potentiometer is given by:
\( V_1 / V_2 = l_1 / l_2 \)
Substituting the given values:
\( 3.06 / 2.295 = 75 / l_2 \)
We need to solve for \( l_2 \):
\( l_2 = (2.295 \times 75) / 3.06 \)
Now, calculating the above expression:
\( l_2 = 171.975 / 3.06 \approx 56.26 \) cm
Therefore, the new balance length for the cell with an e.m.f of 2.295V is approximately 56.26 cm.
Swali 23 Ripoti
Infra-red thermometers work by detecting the
Maelezo ya Majibu
Infra-red thermometers work by detecting the radiation from the body and converting it to temperature. These thermometers are designed to measure the infrared radiation, also known as heat radiation, emitted by objects. All objects with a temperature above absolute zero emit infrared radiation. The thermometer's sensor captures this radiation and converts it into an electrical signal that can be read as a temperature measurement. This method allows for quick, non-contact temperature readings, which is why infrared thermometers are often used in medical settings, industrial applications, and more.
Swali 24 Ripoti
The stress experienced by a wire of diameter
Maelezo ya Majibu
Stress is defined as the force applied per unit area. In the context of a wire being loaded by a weight, the weight acts as the force exerted, and the cross-sectional area of the wire is the area over which this force is distributed.
Force (F): This is given by the weight, which is y2 N.
Cross-sectional Area (A): For a wire with a diameter, the area can be calculated using the formula for the area of a circle: A = πr2, where r is the radius of the wire.
Given the diameter of the wire as yπ meters, the radius (r) is half of the diameter:
r = (yπ)/2
So, the area (A) is:
A = π[(yπ)/2]2
Simplifying the area:
A = π(y2π2/4)
A = y2π3/4
Stress (σ) is given by the formula:
σ = F/A
Substituting the given weight (force) and the calculated area:
σ = (y2) / (y2π3/4)
By simplifying the expression:
σ = (4y2) / (y2π3)
Cancel out y2 from numerator and denominator:
σ = 4/π2 Nm−2
Thus, the correct stress experienced by the wire is 4π Nm−2, as provided in one of the options. The explanation shows clearly how the force and area are used to derive the stress experienced by the wire.
Swali 25 Ripoti
In a Hare's apparatus, the height of water and a liquid X are 0.3m and 0.5m respectively. The relative density of x is?
Maelezo ya Majibu
For Hare's apparatus
Relative density = hwhl
Given: height of liquid = 0.5cm, height of water = 0.3cm
Relative density = 0.30.5 = 0.6
Swali 26 Ripoti
What is the inductance reactance of a coil of 7H when connected to a 50Hz a.c circuit?
Maelezo ya Majibu
To determine the inductive reactance of a coil, we use the formula:
Inductive Reactance (XL) = 2πfL
Where:
Given:
Substituting the given values into the formula:
XL = 2 × π × 50 × 7
Calculating this:
XL = 2 × 3.14159 × 50 × 7
XL ≈ 2 × 3.14159 × 350
XL ≈ 2 × 1099.557
XL ≈ 2199.114
Therefore, the inductive reactance of the coil is approximately 2200Ω.
Swali 27 Ripoti
The friction due to air mass can be reduced by
Maelezo ya Majibu
Friction due to air mass, also known as air resistance or drag, can be reduced by a concept called **streamlining**.
**Streamlining** refers to the shaping of an object in such a way that it allows air to flow smoothly around it, minimizing turbulence and reducing drag. When air flows smoothly over an object without much disturbance, there is less resistance, and the object can move more easily through the air.
Think of it like how a bullet or a fast-moving car is designed. They have a sleek, smooth shape that cuts through the air with minimal effort. This principle is applied in designing cars, airplanes, and even boats to enhance their efficiency and speed by reducing the friction with the air or water they move through.
Swali 28 Ripoti
Maelezo ya Majibu
In a series resonant circuit, the current flowing in the circuit is at its maximum. Let me explain why:
In a series resonant circuit, we have a resistor (R), inductor (L), and capacitor (C) connected in series with an AC source. At a particular frequency called the resonant frequency, these circuits exhibit some unique characteristics. This resonant frequency is determined by the values of the inductor and capacitor and is given by the formula:
f₀ = 1 / (2π√(LC))
At the resonant frequency:
Thus, in a series resonant circuit, when it is operating at its resonant frequency, the current flowing is at its maximum.
Swali 29 Ripoti
The gravitational force between two objects masses 1024 kg and 1027 kg is 6.67N. Calculate the distance between them [ G = 6.6 x 10−11 Nm2 kg−2 ]
Maelezo ya Majibu
To calculate the distance between two objects based on the gravitational force acting between them, we need to use the formula for gravitational force:
F = (G * m1 * m2) / r²
Where:
We need to compute r by rearranging the formula:
r² = (G * m1 * m2) / F
Therefore, the distance r is:
r = √((G * m1 * m2) / F)
Substitute the given values into the equation:
r = √((6.6 x 10-11 Nm²/kg² * 1024 kg * 1027 kg) / 6.67 N)
Calculating inside the square root:
G * m1 * m2 = 6.6 x 10-11 * 1024 * 1027 = 6.6 x 1040 Nm²
Then divide by the force:
6.6 x 1040 Nm² / 6.67 N = 0.99 x 1040 m²
Finally, calculate the square root:
r = √(0.99 x 1040)
r ≈ 1.0 x 1020 m
Therefore, the distance between the two objects is approximately 1.0 x 1020 m.
Swali 30 Ripoti
A medium texture soil with high organic matter is
Maelezo ya Majibu
A medium texture soil with high organic matter is best described as loamy soil. Here's why:
Loamy soil is a type of soil that is characterized by a balanced mixture of sand, silt, and clay particles. Because of this blend, loamy soil is not too coarse like sandy soil, nor is it too compact and dense like clay soil, making it a medium texture.
Moreover, loamy soil is renowned for its high organic matter content. This means that it contains a significant amount of decomposed plant and animal residues, which enrich the soil and provide essential nutrients for plant growth. This high organic content enhances the soil's fertility and structure, enabling it to retain moisture yet drain well, making it ideal for farming and gardening.
In conclusion, due to its balanced texture and richness in organic matter, loamy soil is the best fit for a medium-textured soil with high organic matter.
Swali 31 Ripoti
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called
Maelezo ya Majibu
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called the friction force.
Let me explain each of the options to clarify why friction force is the correct answer:
In summary, friction force is the force that acts to oppose sliding between surfaces in contact and acts tangentially, making it the correct answer.
Swali 32 Ripoti
The major building block of an organism is...
Maelezo ya Majibu
The major building block of an organism is Carbon. Let me explain why in a simple yet comprehensive manner:
Carbon is a unique element found in all living organisms. Its importance comes from its ability to form stable bonds with many other elements, including hydrogen, oxygen, nitrogen, phosphorus, and sulfur. This versatility allows carbon to act as a backbone for the building of complex organic molecules, including proteins, nucleic acids (such as DNA and RNA), carbohydrates, and lipids. These molecules are essential for the structure, function, and regulation of the body's tissues and organs.
Here's why Carbon is indispensable:
In summary, Carbon is the primary building block of life due to its unique chemical properties that allow the formation of complex molecules necessary for life's structure and processes.
Swali 33 Ripoti
In a cross involving a heterozygous red flower plant (Rr) and a white flowered plant (rr). What is the probability that the offspring will be Rr?
Maelezo ya Majibu
By crossing Rr x rr
We obtain Rr , rr , rr , Rr
⇒ 50% = 12
Swali 34 Ripoti
A red shirt under a red light appears pale because red
Maelezo ya Majibu
To understand why a red shirt appears pale under red light, we need to consider how colors are perceived. A shirt's color is due to the light it reflects. A red shirt reflects red light and absorbs other colors. This is why it looks red under normal white light, which is made up of many colors including red.
When you place a red shirt under red light, the only available light to reflect is red. Since the shirt is already designed to reflect red light, it reflects the red light and appears its vivid color. However, it might appear brighter or paler since no other colors are present to contrast against the red.
Therefore, the best explanation is that the red shirt absorbs other colours and reflects red.
Swali 35 Ripoti
An electron falls from an energy level of -5.44eV to another energy level, E. If the emitted photon is of wavelength 5.68 x 10−6 m, calculate the energy change. [ Plank's constant = 6.63 x 10−34 Js, emitted radiation speed = 3.0 x 108 ms−1 ]
Maelezo ya Majibu
To find the energy change when an electron falls from one energy level to another, we need to calculate the energy of the emitted photon. This energy can be found using the formula:
E = hν or E = hc/λ
where:
Substitute these values into the equation:
E = (6.63 x 10-34 Js) * (3.0 x 108 ms-1) / (5.68 x 10-6 m)
First, calculate the numerator:
(6.63 x 10-34) * (3.0 x 108) = 1.989 x 10-25 J·m
Then, divide by the wavelength:
E = 1.989 x 10-25 J·m / 5.68 x 10-6 m = 3.5 x 10-20 J
Therefore, the energy change when the electron falls is approximately 3.5 x 10-20 J.
Checking the options provided, the closest value is 3.49 x 10-20 J.
Swali 36 Ripoti
How much joules of heat are given out when a piece of iron, of mass 60g and specific heat capacity 460JKg−1 K−1 , cools from 75ºC to 35ºC
Maelezo ya Majibu
To find out how much heat is given out when the piece of iron cools down, we can use the formula for heat transfer:
Q = mcΔT
Where:
First, let's list the values given and convert the mass from grams to kilograms:
Now, calculate the change in temperature:
ΔT = final temperature - initial temperature = 35ºC - 75ºC = -40ºC
Note: Since we are calculating the heat given out as the iron cools, the temperature change will be negative, which will make Q positive, indicating heat is released.
Substitute these values into the heat transfer formula:
Q = mcΔT = (0.06 kg) x (460 J/Kg·K) x (-40ºC)
Q = 0.06 x 460 x -40
Q = -1104 Joules
Since the question asks for how much heat is given out, we consider the positive value of Q, which is 1104J. Therefore, 1104J of heat is given out when the piece of iron cools from 75ºC to 35ºC.
Swali 37 Ripoti
The dimension of young's modulus,E is given by
Maelezo ya Majibu
Young's modulus, denoted by E, is a measure of the stiffness of a solid material. It is defined as the ratio of stress to strain in a material that is behaving elastically. Stress is the force applied per unit area, and strain is the deformation experienced by the material in response to the applied stress.
Let's break down the dimensions for Young's modulus:
Stress: Stress is defined as force per unit area. Thus, the dimension of stress can be expressed as:
Stress = Force / Area
The dimension of force is given by mass × acceleration, i.e., Force = MLT-2 (where M is mass, L is length, and T is time).
The dimension of area is length × length = L2.
Therefore, the dimension of stress is:
Stress = (MLT-2) / (L2) = ML-1T-2
Strain: Strain is the ratio of the change in length to the original length and is dimensionless because it is a ratio of two lengths.
Thus, the dimension of strain is simply 1 (dimensionless).
Since Young's modulus is the ratio of stress to strain, its dimension is the same as that of stress. Therefore, the dimension of Young’s modulus E is:
ML-1T-2
Swali 38 Ripoti
Using the diagram above, the effective force pushing it forward at an angle 60º is
Maelezo ya Majibu
To determine the effective force pushing the object forward at an angle of 60º, we need to resolve the given force into its components. Specifically, we are interested in the horizontal component of the force, as this is the part that effectively pushes the object forward.
The general formula to calculate the horizontal component of a force (Fx) when the force is applied at an angle (θ) is:
Fx = F * cos(θ)
Where:
Assuming the magnitude of the force applied (F) is 50N, then the effective forward force can be calculated as follows:
Fx = 50N * cos(60º)
Using the trigonometric value:
cos(60º) = 0.5
Therefore:
Fx = 50N * 0.5
Fx = 25N
Hence, the effective force pushing it forward at an angle of 60º is 25.00N. Therefore, the correct answer is 25.00N.
Swali 39 Ripoti
A thick glass tumbler cracks when boiling water is poured into it because
Maelezo ya Majibu
When boiling water is poured into a thick glass tumbler, the inner surface of the glass is suddenly exposed to a much higher temperature compared to the outer surface. Glass is a poor conductor of heat, which means it does not transfer heat quickly. As a result, the inside of the tumbler becomes hot and attempts to **expand quickly**, while the outside remains cooler and does not expand at the same rate.
**This uneven expansion** creates tension between the inner and outer layers of the glass. The inner surface tries to expand but is constrained by the cooler, rigid outer surface, which isn't expanding as much or as quickly. This stress and tension can lead to cracking.
Therefore, the correct reason a thick glass tumbler cracks when boiling water is poured into it is because **the inside expands more rapidly than the outside.**
Swali 40 Ripoti
Maelezo ya Majibu
When you insert a sheet of an insulating material between the plates of an air capacitor, the capacitance will increase.
Here's why:
C = ε₀ * (εr) * (A/d)
Therefore, inserting an insulating material as a dielectric enhances the capacitor's ability to store charge, ultimately resulting in an increase in capacitance.
Je, ungependa kuendelea na hatua hii?