Inapakia....
Bonyeza na Ushikilie kuvuta kuzunguka |
|||
Bonyeza Hapa Kufunga |
Swali 1 Ripoti
The diaphragm in the camera is similar to what part of the eyes?
Maelezo ya Majibu
The diaphragm in a camera is similar to the iris in the human eye.
Here's a simple explanation:
In summary, the iris acts like a natural diaphragm, regulating the light that passes through the eye, much like the diaphragm does in a camera.
Swali 2 Ripoti
Two points on a velocity-time graph have coordinates (2s, 5m/s) and (4s, 15m/s). Calculate the mean acceleration
Maelezo ya Majibu
The mean acceleration of an object is determined by the change in velocity over the change in time. This is given by the formula:
Mean Acceleration (a) = (Final Velocity - Initial Velocity) / (Final Time - Initial Time)
From the velocity-time graph, we have the following points:
Initial Point: (2s, 5m/s)
Final Point: (4s, 15m/s)
Here, the Initial Velocity is 5m/s, the Final Velocity is 15m/s, the Initial Time is 2s, and the Final Time is 4s.
Plug these values into the formula:
Mean Acceleration (a) = (15m/s - 5m/s) / (4s - 2s)
Simplifying this, we get:
Mean Acceleration (a) = 10m/s / 2s = 5m/s²
The mean acceleration is therefore 5.0 m/s².
Swali 3 Ripoti
A practical application of total internal reflection is found in
Maelezo ya Majibu
A practical application of total internal reflection is found in fiber optics.
To understand this, let's break it down:
When light travels from one medium to another (such as from glass to air), it changes direction. This is known as refraction. However, there is a phenomenon called total internal reflection which occurs when light is traveling within a denser medium towards a less dense medium (like from glass to air) and hits the boundary at an angle greater than a certain critical angle. Instead of passing through, the light is completely reflected back into the denser medium.
Fiber optics technology makes use of this principle. In fiber optics, light is transmitted along the core of a thin glass or plastic fiber. The core is surrounded by another layer called the cladding. This cladding has a lower refractive index than the core, which facilitates total internal reflection. As a result, the light continuously reflects internally along the length of the fiber, allowing it to travel long distances with minimal loss.
This property is harnessed in various applications such as in high-speed telecommunication systems, medical equipment like endoscopes, and other technologies that require the transmission of data over long distances with high efficiency.
Swali 4 Ripoti
Bile is a greenish alkaline liquid which is stored in the
Maelezo ya Majibu
Bile is a greenish alkaline liquid that plays a crucial role in the digestive process, particularly in the digestion and absorption of fats. It is produced in the liver, but it is not stored there. Instead, the bile is transported to a small organ where it is concentrated and stored until the body needs it for digestion. This organ is the gall bladder.
The gall bladder stores the bile and releases it into the small intestine when food, especially fatty food, enters the digestive tract. This helps in breaking down the fats into smaller droplets, making it easier for enzymes to digest them.
To sum up, the gall bladder is the organ responsible for storing bile.
Swali 5 Ripoti
A body is pulled on a horizontal surface with a rope inclined at 30º to the vertical. If the effective force pulling the body along the horizontal surface is 15N, calculate the tension on the rope.
Maelezo ya Majibu
In this problem, the tension in the rope results in a force that acts to pull the body along the horizontal surface. The rope is inclined at 30º to the vertical, which means it makes an angle of 60º with the horizontal since the total angle between vertical and horizontal is 90º.
To find the tension in the rope, we first understand that the component of the tension force acting along the horizontal surface is given by the formula:
F_horizontal = Tension * cos(θ)
Where:
Given that F_horizontal = 15N, we substitute into the equation:
15N = Tension * cos(60º)
We know that cos(60º) = 0.5, therefore:
15N = Tension * 0.5
To find the Tension, divide both sides of the equation by 0.5:
Tension = 15N / 0.5
Tension = 30N
Therefore, the tension in the rope is 30N.
Swali 6 Ripoti
Maelezo ya Majibu
When you insert a sheet of an insulating material between the plates of an air capacitor, the capacitance will increase.
Here's why:
C = ε₀ * (εr) * (A/d)
Therefore, inserting an insulating material as a dielectric enhances the capacitor's ability to store charge, ultimately resulting in an increase in capacitance.
Swali 7 Ripoti
Infra-red thermometers work by detecting the
Maelezo ya Majibu
Infra-red thermometers work by detecting the radiation from the body and converting it to temperature. These thermometers are designed to measure the infrared radiation, also known as heat radiation, emitted by objects. All objects with a temperature above absolute zero emit infrared radiation. The thermometer's sensor captures this radiation and converts it into an electrical signal that can be read as a temperature measurement. This method allows for quick, non-contact temperature readings, which is why infrared thermometers are often used in medical settings, industrial applications, and more.
Swali 8 Ripoti
Two tuning forks of frequencies 6Hz and 4Hz respectively are sounded together. The beat frequency is
Maelezo ya Majibu
When two sound waves of slightly different frequencies are sounded together, they interfere with each other in such a way that the intensity of the sound alternates between loud and soft. This phenomenon is known as "beats". The number of beats heard per second is called the "beat frequency".
The beat frequency can be calculated by subtracting the frequency of one wave from the frequency of the other. Mathematically, it is represented as:
Beat Frequency (fbeat) = | f1 - f2 |
Where:
In this case:
Using the formula:
fbeat = | 6Hz - 4Hz | = | 2Hz | = 2Hz
Therefore, the beat frequency is 2Hz. This means that you would hear 2 beats per second when the tuning forks of frequencies 6Hz and 4Hz are sounded together.
Swali 9 Ripoti
The part of the inner ear that is responsible for hearing is
Maelezo ya Majibu
The part of the inner ear that is responsible for hearing is the cochlea.
The inner ear is a complex structure, and each of its components serves different functions. Let me break it down further:
Thus, the cochlea is the crucial component of the inner ear responsible for converting sound vibrations into nerve signals, making it central to the process of hearing.
Swali 10 Ripoti
Calculate the quantity of heat for copper rod whose thermal capacity is 400Jk−1 for a temperature change of 60ºC to 80ºC
Maelezo ya Majibu
To calculate the quantity of heat absorbed or released by a substance, we can use the formula:
Q = C × ΔT
where:
Given:
First, calculate the change in temperature:
ΔT = Final temperature - Initial temperature = 80°C - 60°C = 20°C
Now, substitute the values into the formula to find the quantity of heat:
Q = 400 J/°C × 20°C
Calculate the answer:
Q = 8000 J
Since the options provided are in kilojoules (KJ), we need to convert joules (J) to kilojoules (1 KJ = 1000 J):
Q = 8000 J ÷ 1000 = 8 KJ
Therefore, the quantity of heat for the copper rod, given the specified conditions, is 8 KJ.
Swali 11 Ripoti
The dimension of young's modulus,E is given by
Maelezo ya Majibu
Young's modulus, denoted by E, is a measure of the stiffness of a solid material. It is defined as the ratio of stress to strain in a material that is behaving elastically. Stress is the force applied per unit area, and strain is the deformation experienced by the material in response to the applied stress.
Let's break down the dimensions for Young's modulus:
Stress: Stress is defined as force per unit area. Thus, the dimension of stress can be expressed as:
Stress = Force / Area
The dimension of force is given by mass × acceleration, i.e., Force = MLT-2 (where M is mass, L is length, and T is time).
The dimension of area is length × length = L2.
Therefore, the dimension of stress is:
Stress = (MLT-2) / (L2) = ML-1T-2
Strain: Strain is the ratio of the change in length to the original length and is dimensionless because it is a ratio of two lengths.
Thus, the dimension of strain is simply 1 (dimensionless).
Since Young's modulus is the ratio of stress to strain, its dimension is the same as that of stress. Therefore, the dimension of Young’s modulus E is:
ML-1T-2
Swali 12 Ripoti
An object is placed 25cm in front of a convex mirror has its image formed 5cm behind the mirror. what is the focal length of the convex mirror
Maelezo ya Majibu
Object distance (u) = -25 cm (negative because the object is in front of the mirror)
Image distance (v) = +5 cm (positive because the image is behind the convex mirror)
Using 1f = 1u + 1v
1f = 1−25 + 15
f = 254 = 6.250cm.
Swali 13 Ripoti
Calculate the upthrust on a spherical ball of volume 4.2 x 10−4 m3 when totally immersed in a liquid of density 1028kgm−3
Maelezo ya Majibu
Upthrust(Force) = volume of object x density of liquid x g = V x ρ x g
U = 4.2 x 10−4 x 1028 x 10 ≊ 4.3N
Swali 14 Ripoti
The quantity of heat required to melt ice of 0.2 kg whose specific latent heat is 3.4 x 105 J/Kg is
Maelezo ya Majibu
To determine the quantity of heat required to melt ice, we use the formula for latent heat:
Q = m × L,
where:
For this problem, we have:
Now, substitute these values into the formula:
Q = 0.2 kg × 3.4 × 105 J/kg
Calculate the product:
Q = 0.68 × 105 J
To express this in standard scientific notation, it can be rewritten as:
Q = 6.8 × 104 J
Thus, the quantity of heat required to melt 0.2 kg of ice is 6.8 × 104 J.
Swali 15 Ripoti
The defect of the eye lens which occurs when the ciliary muscles are weak is
Maelezo ya Majibu
The defect of the eye lens that occurs when the ciliary muscles are weak is known as Presbyopia.
Here's a simple explanation:
The ciliary muscles in the eye are responsible for helping the lens to change shape so that you can focus on objects at different distances. As people age, the ciliary muscles may become weaker. This weakness hampers their ability to properly adjust the lens. As a result, the lens cannot accommodate or focus as effectively, especially when looking at nearby objects. This leads to a difficulty in seeing objects up close clearly, which is known as presbyopia.
Presbyopia is a natural condition associated with aging, and it typically becomes noticeable in people in their 40s or 50s. This is different from other eye conditions like:
So in summary, presbyopia is the condition that results from weakened ciliary muscles, affecting near vision as a person ages.
Swali 16 Ripoti
The gravitational force between two objects masses 1024 kg and 1027 kg is 6.67N. Calculate the distance between them [ G = 6.6 x 10−11 Nm2 kg−2 ]
Maelezo ya Majibu
To calculate the distance between two objects based on the gravitational force acting between them, we need to use the formula for gravitational force:
F = (G * m1 * m2) / r²
Where:
We need to compute r by rearranging the formula:
r² = (G * m1 * m2) / F
Therefore, the distance r is:
r = √((G * m1 * m2) / F)
Substitute the given values into the equation:
r = √((6.6 x 10-11 Nm²/kg² * 1024 kg * 1027 kg) / 6.67 N)
Calculating inside the square root:
G * m1 * m2 = 6.6 x 10-11 * 1024 * 1027 = 6.6 x 1040 Nm²
Then divide by the force:
6.6 x 1040 Nm² / 6.67 N = 0.99 x 1040 m²
Finally, calculate the square root:
r = √(0.99 x 1040)
r ≈ 1.0 x 1020 m
Therefore, the distance between the two objects is approximately 1.0 x 1020 m.
Swali 17 Ripoti
A thick glass tumbler cracks when boiling water is poured into it because
Maelezo ya Majibu
When boiling water is poured into a thick glass tumbler, the inner surface of the glass is suddenly exposed to a much higher temperature compared to the outer surface. Glass is a poor conductor of heat, which means it does not transfer heat quickly. As a result, the inside of the tumbler becomes hot and attempts to **expand quickly**, while the outside remains cooler and does not expand at the same rate.
**This uneven expansion** creates tension between the inner and outer layers of the glass. The inner surface tries to expand but is constrained by the cooler, rigid outer surface, which isn't expanding as much or as quickly. This stress and tension can lead to cracking.
Therefore, the correct reason a thick glass tumbler cracks when boiling water is poured into it is because **the inside expands more rapidly than the outside.**
Swali 18 Ripoti
I It wets glass
II It needs to be coloured
III It has a low density
Water is not suitable for use as a thermometric liquid because
Maelezo ya Majibu
Water is not suitable for use as a thermometric liquid because:
a) It wets glass: This can cause issues with reading the level of the liquid.
b) It needs to be coloured: Water is typically clear, making it difficult to see the level without coloring.
c) It has a low density: This can affect the sensitivity and accuracy of the thermometer.
Swali 19 Ripoti
Rainbow is formed when sunlight undergoes
Maelezo ya Majibu
A rainbow is formed through a combination of three processes: reflection, refraction, and dispersion. Let's break down each process to understand how a rainbow forms:
1. Refraction: When sunlight enters a raindrop, it bends or changes direction. This bending of light is known as **refraction**. Different colors of sunlight bend by different amounts because they have different wavelengths.
2. Reflection: Once inside the raindrop, the light gets reflected off the inside surface of the drop. This reflection sends the light back out of the raindrop at different angles.
3. Dispersion: As the light exits the raindrop, it bends again (refraction). Because each color bends by a different amount, the sunlight is spread out into its component colors, creating a spectrum. This spreading into a spectrum is called **dispersion**.
All three processes contribute to the formation of a rainbow. The combination of **refraction, reflection, and dispersion** results in the beautiful arc of colors that we see in the sky.
Swali 20 Ripoti
If the displacement of a car is proportional to the square of time, then the car is moving with
Maelezo ya Majibu
When we say that the displacement of a car is proportional to the square of time (d ∝ t²), it indicates a relationship between displacement (d) and time (t). This relationship is characteristic of motion where there is constant acceleration. Essentially, it means that the car is not moving at a constant speed (velocity) but is accelerating at a constant rate.
The mathematical representation of this scenario can be expressed using the formula for displacement under uniform acceleration:
d = ut + (1/2)at².
In this equation:
When the displacement is directly proportional to the square of time (d ∝ t²), it implies that the second term of the equation, which contains the (1/2)at² part, dominates the relationship. Thus, the initial velocity (u) is typically zero or negligible, making the entire displacement dependent on how time squared interacts with acceleration.
Therefore, the car is moving with uniform acceleration.
Swali 21 Ripoti
At absolute zero temperature, the average velocity of the molecules
Maelezo ya Majibu
At absolute zero temperature, which is defined as 0 Kelvin or -273.15 degrees Celsius, the energy of molecular motion ceases. This means that the molecules theoretically have minimal energy, and hence, their motion stops entirely. Therefore, the average velocity of the molecules is zero. In reality, absolute zero is a theoretical limit, and it is practically unreachable, but it serves as a concept to help in understanding the behavior of molecules at extremely low temperatures. Thus, under this theoretical condition, the average motion of molecules would be nonexistent. In summary, the average velocity of the molecules at absolute zero is zero.
Swali 22 Ripoti
I
6 X + 6 H2 O → C6 H12 O6 + 6O2
III chlorophyll II IV
Use the diagram above to answer question that follows
The part labelled I is
Maelezo ya Majibu
The part labelled I in the diagram refers to **sunlight**.
Here's a simple explanation:
The given chemical equation is a representation of **photosynthesis**, a process by which green plants, algae, and some bacteria convert light energy, typically from the sun, into chemical energy stored in glucose (C6H12O6) and release oxygen (O2) as a by-product.
In the context of the equation:
- **6CO2 (Carbon Dioxide) + 6H2O (Water) → C6H12O6 (Glucose) + 6O2 (Oxygen)**
The arrow indicates the transformation that occurs during the process. The **chlorophyll** (labelled in the diagram) indicates the presence of chlorophyll pigments in the chloroplasts of plant cells which are essential for **absorbing sunlight**.
Since **sunlight** is the source of energy that powers this transformation, it is the correct component for the part labelled I in the diagram.
Swali 23 Ripoti
Which of the following is the best as shaving mirror?
Maelezo ya Majibu
When selecting the best type of mirror for shaving, the key consideration is how the mirror reflects light and creates an image. For the purpose of shaving, it is important to have a mirror that magnifies the face and provides a clear view.
The best option for a shaving mirror is a concave mirror. Here is why:
Other types of mirrors, like convex and plane mirrors, and parabolic mirrors, do not provide the same level of magnification or focused reflecting properties, making them less suitable for shaving purposes.
Swali 24 Ripoti
If the S.V.P of water vapour was 13.5mmHg at 33ºC and 7.3mmHg at 7ºC. Find the percentage relative of the air on a day when average air temperature was 33ºC and dew point was 7ºC.
Maelezo ya Majibu
To calculate the percentage relative humidity of the air, we use the relationship between the saturation vapour pressure (SVP) and the actual vapour pressure. The formula for relative humidity is:
Relative Humidity (%) = (Actual Vapour Pressure / Saturation Vapour Pressure) * 100
In this problem, the "dew point" refers to the temperature at which air becomes saturated with moisture and water begins to condense. At the dew point, the actual vapour pressure is equal to the saturation vapour pressure at that dew point temperature.
From the problem, we have:
The actual vapour pressure of the air is equal to the SVP at the dew point, which is 7.3 mmHg.
Now we calculate the percentage relative humidity using the formula:
Relative Humidity (%) = (7.3 mmHg / 13.5 mmHg) * 100
Carrying out the calculation:
Relative Humidity (%) = (7.3 / 13.5) * 100 = 0.5407 * 100 = 54.07%
Rounding to the nearest whole number, we get **54%**. Therefore, the percentage relative humidity of the air is 54%.
Swali 25 Ripoti
The thermometer whose thermometric property is change in volume with temperature is
Maelezo ya Majibu
A thermometer that relies on the **thermometric property** of **change in volume with temperature** is the **Liquid-in-glass thermometer**.
Here is why:
1. **Construction**: A liquid-in-glass thermometer consists of a **glass tube** that encloses a small reservoir filled with a **thermometric liquid**, typically mercury or colored alcohol.
2. **Principle of Operation**: As the **temperature** changes, the **volume of the liquid** inside the tube changes. When the temperature rises, the liquid **expands** and moves up the tube. Conversely, when the temperature decreases, the liquid **contracts** and moves down the tube.
3. **Scale Calibration**: The thermometer has graduations marked along the tube, allowing the user to read the temperature by observing the level of the liquid against these scale markings.
Therefore, the liquid-in-glass thermometer operates on the principle that the **volume of a liquid changes with temperature**, making it the correct answer.
Swali 26 Ripoti
Maelezo ya Majibu
To solve this problem, we need to understand the relationship between pressure, volume, and temperature of a gas. The relevant law here is the **Combined Gas Law**, which is expressed as:
(P1 * V1) / T1 = (P2 * V2) / T2
Where:
In the given problem:
Applying the Combined Gas Law:
(P1 * V1) / 300 = (2 * P1 * V2) / 400
Simplifying this equation:
V1/300 = 2V2/400
Multiply both sides by 400 to clear the fraction:
400 * V1 / 300 = 2 * V2
Which further simplifies to:
(4/3) * V1 = 2 * V2
Dividing both sides by 2:
(2/3) * V1 = V2
This shows that the final volume, V2, is **2/3 of the initial volume, V1**. Therefore, the volume of the gas will **decrease by 1/3**.
Swali 27 Ripoti
A cell of internal resistance of 2Ω supplies current through a resistor, X if the efficiency of the cell is 75%, find the value of X.
Maelezo ya Majibu
To solve the problem, let's first understand the concept of efficiency in this context. Efficiency refers to the ratio of the useful power output to the total power output of a system. In simpler terms, it tells us how much of the power provided by the cell is being effectively used by the resistor, X.
Given that the cell has an internal resistance (r) of 2Ω and we need the efficiency to be 75%, we will follow these steps:
Efficiency (%) = (R / (R + r)) * 100
Where:
According to the problem, efficiency is 75%, so:
(X / (X + 2)) * 100 = 75
First, let’s eliminate the percentage by dividing both sides by 100:
(X / (X + 2)) = 0.75
Now, let's solve for X:
X = 0.75 * (X + 2)
X = 0.75X + 1.5
0.25X = 1.5
X = 1.5 / 0.25
X = 6 Ω
Hence, for the cell to have an efficiency of 75%, the value of the resistor X must be 6Ω.
Swali 28 Ripoti
According to kinetic theory of gases, the pressure exerted by the gas on the wall is equal
Maelezo ya Majibu
According to the kinetic theory of gases, the pressure exerted by a gas on the walls of its container relates to the behavior and movement of its molecules. To understand how this pressure forms, let's explore the following essential concepts.
Molecules in a gas move rapidly and randomly in all directions. When these molecules collide with the walls of their container, they exert force due to the change in momentum during these collisions. The frequency and force of these collisions contribute directly to the pressure experienced by the container walls.
The **pressure** exerted by the gas can be described in terms of the rate of change of momentum imparted by the walls per second per unit area. This means that pressure is determined by considering how fast and how much the momentum of the gas molecules changes when they bounce off the container's walls, spread over a specific area and over time. In simpler terms, the faster and more frequently molecules hit the walls, and the higher their change in momentum, the greater the pressure is.
This explanation can be directly associated with the statement: "rate of change of momentum imparted by the walls per second per unit area", which accurately describes the concept of pressure in the context of the kinetic theory of gases.
Swali 29 Ripoti
Calculate the power of an object which moves through a distance of 500cm in 1s on a frictionless surface by a horizontal force of 50N
Maelezo ya Majibu
To calculate the power of an object, we need to use the formula for power in terms of work done over time. The formula is:
Power (P) = Work Done (W) / Time (t)
First, let's find the work done on the object. Work done can be calculated using the formula:
Work Done (W) = Force (F) × Distance (d)
Given:
Substituting the values into the formula for work done, we get:
Work Done (W) = 50 N × 5 m = 250 Joules
Next, we consider the time it took for the object to move this distance:
Now, substituting the work done and time into the power formula:
Power (P) = 250 Joules / 1 s = 250 Watts
Thus, the power of the object is 250 Watts.
Swali 30 Ripoti
A load of 300N is to be lifted by a machine with a velocity ratio of 2 and an efficiency of 60%. What effort will be applied to lift the load?
Maelezo ya Majibu
To determine the effort needed to lift a load using a machine, we first need to understand some key concepts: **Load**, **Effort**, **Velocity Ratio** (VR), and **Efficiency**.
1. **Load** is the force or weight that needs to be lifted by the machine. In this case, the load is 300N.
2. **Velocity Ratio (VR)** is the ratio of the distance moved by the effort to the distance moved by the load. Given here as 2.
3. **Efficiency** of a machine is expressed as a percentage and is the ratio of the useful work output to the input work done by the effort. Here, the efficiency is 60% or 0.60 as a decimal.
The formula to calculate the **Effort** is derived from the relationship between these factors:
\[ \text{Efficiency} = \frac{\text{Mechanical Advantage (MA)}}{\text{Velocity Ratio (VR)}} \]
Where:
\[ \text{Mechanical Advantage (MA)} = \frac{\text{Load}}{\text{Effort}} \]
From the above, we have:
\[ \text{MA} = \text{VR} \times \text{Efficiency} \]
Replacing with the given values:
\[ MA = 2 \times 0.60 = 1.2 \]
Now, calculate the **Effort** using the relation:
\[ \text{Effort} = \frac{\text{Load}}{\text{MA}} \]
\[ \text{Effort} = \frac{300N}{1.2} = 250N \]
Therefore, the **Effort** needed to lift the load is 250N.
Swali 31 Ripoti
An electron falls from an energy level of -5.44eV to another energy level, E. If the emitted photon is of wavelength 5.68 x 10−6 m, calculate the energy change. [ Plank's constant = 6.63 x 10−34 Js, emitted radiation speed = 3.0 x 108 ms−1 ]
Maelezo ya Majibu
To find the energy change when an electron falls from one energy level to another, we need to calculate the energy of the emitted photon. This energy can be found using the formula:
E = hν or E = hc/λ
where:
Substitute these values into the equation:
E = (6.63 x 10-34 Js) * (3.0 x 108 ms-1) / (5.68 x 10-6 m)
First, calculate the numerator:
(6.63 x 10-34) * (3.0 x 108) = 1.989 x 10-25 J·m
Then, divide by the wavelength:
E = 1.989 x 10-25 J·m / 5.68 x 10-6 m = 3.5 x 10-20 J
Therefore, the energy change when the electron falls is approximately 3.5 x 10-20 J.
Checking the options provided, the closest value is 3.49 x 10-20 J.
Swali 32 Ripoti
A boy standing 408m from a wall blew a trumpet and heard the echo 2.4s later. Calculate the speed of the sound
Maelezo ya Majibu
To calculate the speed of sound, we need to understand that an echo involves a sound wave traveling to a surface and back. In this case, the sound travels from the boy to the wall and then returns.
The total distance that the sound wave travels is twice the distance from the boy to the wall because it goes to the wall and back. Therefore, the total distance is:
Total Distance = 2 x 408m = 816m
The echo was heard 2.4 seconds after the sound was made. The speed of sound can be calculated using the formula:
Speed of Sound = Total Distance / Time
Plugging in the values, we have:
Speed of Sound = 816m / 2.4s
When you perform the division, you find:
Speed of Sound = 340 m/s
Thus, the speed of the sound is 340 m/s, which is the correct answer.
Swali 33 Ripoti
The charge of magnitude 1.6 x 10 −19 C is placed in a uniform electric field of intensity 1200Vm−1 . Calculate its acceleration, if the mass of the charge is 9.1 x 10−31 kg
Maelezo ya Majibu
To calculate the acceleration of a charge in an electric field, we start by determining the force acting on the charge. The force \( F \) experienced by a charge \( q \) in a uniform electric field \( E \) is given by the equation:
F = q * E
We are given:
Substituting these values into the equation for force:
F = 1.6 x 10-19 C * 1200 V/m
This results in:
F = 1.92 x 10-16 N
Next, we use Newton’s second law of motion to find the acceleration \( a \) of the charge. This law is given as:
F = m * a
Rearranging for \( a \), we have:
a = F / m
We know:
Substituting these values in the equation for acceleration:
a = \(\frac{1.92 x 10^{-16} N}{9.1 x 10^{-31} kg}\)
Calculating the above expression gives:
a ≈ 2.11 x 1014 ms-2
Therefore, the acceleration of the charge is approximately 2.11 x 1014 ms-2.
Swali 34 Ripoti
A wheelbarrow inclined at 60º to the horizontal is pushed with a force of 150N. What is the horizontal component of the applied force
Maelezo ya Majibu
When you push a wheelbarrow inclined at an angle to the horizontal, the applied force can be divided into two components: a **horizontal component** and a **vertical component**. To find the horizontal component of the force, you need to use the concept of resolving vectors.
The force of 150N is acting at an angle of 60º to the horizontal. The horizontal component of this force can be calculated using the cosine of the angle. The formula to determine the horizontal component \( F_{\text{horizontal}} \) is given by:
Fhorizontal = Fapplied \times \cos(\theta)
Where:
Substitute the values into the formula:
Fhorizontal = 150N \times \cos(60º)
We know that \(\cos(60º)\) equals 0.5.
Therefore:
Fhorizontal = 150N \times 0.5 = 75N
Thus, the **horizontal component** of the applied force is 75N.
Swali 35 Ripoti
Using the diagram above, calculate the relative density of x, if the density of methanol is 800kgm−3
Maelezo ya Majibu
density of methanol = 800kgm−3 → 0.8gcm−3
At equilibrium, the density of methanol = the density of liquid x
ρ x h x g = ρ x x hx x g
0.8 x 7.1 = ρ x x 14.2
ρ x = 0.8×7.114.2 = 0.4gcm−3
∴ , the relative density of liquid x = 0.4
Relative density of X = density of liquid xdensity of methanol = 0.40.8 = 0.5
Swali 36 Ripoti
In electrolysis, when same quantity of electricity is passed through different electrolytes, mass of substances deposited is proportional to
Maelezo ya Majibu
In electrolysis, when the same quantity of electricity is passed through different electrolytes, the mass of substances deposited is proportional to their chemical equivalent. The reason for this lies in Faraday's laws of electrolysis. Faraday's second law states that the amounts of different substances deposited or liberated by the same quantity of electricity are proportional to their chemical equivalents.
Chemical equivalent refers to a measure of a substance's ability to react or be deposited during electrolysis, and it is calculated as the molar mass divided by valency (n). This is why it is sometimes also referred to as equivalent weight.
In essence, for a given charge (equal number of electrons or electricity), a substance with a lower chemical equivalent will deposit more mass because it requires fewer electrons to undergo the chemical change.
Swali 37 Ripoti
The web-feet of frogs and toads is basically for
Maelezo ya Majibu
The web-feet of frogs and toads is primarily for swimming. These webbed feet act like paddles, allowing the frog or toad to move efficiently through the water. When the animal spreads its toes, the webbing provides a larger surface area, which gives better propulsion in the water. This adaptation is essential, as many species of frogs and toads spend a significant amount of their time in aquatic environments where efficient swimming helps them in searching for food, escaping predators, and traveling from one place to another. In essence, the webbed feet are a vital feature for their aquatic lifestyle.
Swali 38 Ripoti
The energy in a moving car is an example of
Maelezo ya Majibu
The energy in a moving car is an example of kinetic energy.
To explain simply, **energy** is the ability to do **work** or cause **change**. There are different forms of energy, and **kinetic energy** is one of them. It is defined as the energy possessed by an object due to its motion.
When a car is moving, it possesses **kinetic energy** because its components are in **motion**. This motion energy allows the car to do tasks, such as transporting people or goods from one place to another. The faster the car moves, the greater its **kinetic energy**, and thus it can make a larger impact or do more work.
In contrast, energy forms like **mechanical energy** is a combination of both kinetic and potential energy; **electrical energy** is associated with electrical charge movement, while **potential energy** is related to the position or condition of an object (like a car parked on a hill). Therefore, the specific type of energy from a moving car is **kinetic energy**.
Swali 39 Ripoti
The degree of precision of a vernier caliper is
Maelezo ya Majibu
The degree of precision of a vernier caliper is actually the **smallest value** that the vernier scale can measure, which can be considered as the resolution or least count of the instrument. The degree of precision for most standard vernier calipers is 0.01 cm (or 0.1 mm). This means that the caliper can measure dimensions down to a hundredth of a centimeter.
To understand why this is the case, consider the construction of a vernier caliper:
This alignment allows more precise measurements than the main scale alone. If the vernier scale has 10 divisions which coincide over a length equal to 9 divisions on the main scale, then each division of the vernier scale represents an extra 0.01 cm. Therefore, it allows measuring smaller intervals between the main scale markings very precisely.
Thus, you won't find vernier calipers with a degree of precision of 0.005 cm, 0.1 cm, or 1.0 cm as options in standard practice for precise measurement tools.
Swali 40 Ripoti
What is the colour of red rose under a blue light?
Maelezo ya Majibu
To understand the color of a red rose under a blue light, we need to consider how we perceive color. Objects appear colored because they reflect certain wavelengths of light. A red rose appears red in white light because it reflects red wavelengths and absorbs others.
When you shine blue light on a red rose, the situation changes. A blue light primarily contains blue wavelengths. Since the red rose does not have red wavelengths to reflect anymore, and it cannot reflect blue light (as it absorbs it), the rose will appear to be the absence of any reflected wavelength visible to our eyes.
This means the rose will appear black under blue light, as black is perceived when no visible light is reflected into our eyes. Thus, the color of the red rose under a blue light is black.
Je, ungependa kuendelea na hatua hii?