A carregar...
Pressione e Mantenha para Arrastar |
|||
Clique aqui para fechar |
Pergunta 1 Relatório
The chemical formula for potassiumhexacyanoferrate(II) is
Detalhes da Resposta
The chemical formula for potassiumhexacyanoferrate(II) is K4Fe(CN)6.
Let's break down the name to understand why:
1. Potassium (K): The compound includes potassium ions. In this case, four potassium ions are present, indicated by the subscript 4 in K4.
2. Hexacyano: The prefix "hexa" means six, which signifies there are six cyanide ions (CN-) in the complex. This is represented as (CN)6.
3. Ferrate (II): The word "ferrate" suggests the presence of iron (Fe). The Roman numeral (II) indicates that the iron is in the +2 oxidation state.
Overall, the complex ion is [Fe(CN)6] with a charge of 4-, so to balance the charge, four potassium ions (each with a charge of +1) are needed, resulting in the formula K4Fe(CN)6.
Pergunta 2 Relatório
Calculate the number of moles of Copper that will be deposited, if 2 Faraday of electricity is passed through the copper during the electrolysis of copper(II)tetraoxosulphate(VI)
[1F = 96500C ]
Detalhes da Resposta
The electrolysis of copper(II) tetraoxosulphate(VI) involves the deposition of copper at the cathode. To understand how many moles of copper are deposited when 2 Faraday of electricity is passed through, we need to consider Faraday's first law of electrolysis. Faraday's first law states that the mass (or number of moles) of a substance deposited at an electrode is directly proportional to the quantity of electricity that is passed through the electrolyte.
A Faraday (or Faraday constant) is the charge of one mole of electrons, which is approximately **96500 coulombs** (C). During electrolysis, the chemical reaction occurring at the cathode for copper deposition can be represented by the following equation:
Cu2+ + 2e- → Cu
This equation shows that **2 moles of electrons** (represented by 2e-) are needed to deposit **1 mole of copper (Cu)**.
If we have **2 Faradays** of electricity, it means we have **2 x 96500 C = 193000 C**. Since **1 Faraday (96500 C)** is required to deposit **0.5 mole** of copper, **2 Faradays** will deposit twice that amount:
0.5 mole of copper deposited per Faraday x 2 Faradays = **1.0 mole** of copper
Thus, when **2 Faradays** of electricity are passed through copper(II) tetraoxosulphate(VI) solution, **1.0 mole** of copper will be deposited.
Pergunta 3 Relatório
The percentage of carbon(IV) oxide in air is
Detalhes da Resposta
The air we breathe is made up of a mixture of gases. The most abundant gases in the atmosphere are nitrogen and oxygen, but there are other gases present in smaller amounts, one of which is carbon dioxide, chemically known as carbon(IV) oxide.
Carbon dioxide makes up approximately 0.03% of the Earth's atmosphere by volume. This value can also be expressed in different terms, such as 300 parts per million (ppm). Even though it is a small percentage, carbon dioxide plays a significant role in maintaining the Earth's temperature through the greenhouse effect.
In summary, the percentage of carbon(IV) oxide in air is 0.03%.
Pergunta 4 Relatório
What accounts for the low melting and boiling points of covalent molecules?
Detalhes da Resposta
The low melting and boiling points of covalent molecules are primarily due to the presence of weak intermolecular forces between the molecules. While covalent molecules consist of atoms bonded together by strong covalent bonds, the forces between separate molecules, known as van der Waals forces or London dispersion forces, are much weaker. These weak forces require significantly less energy to overcome, which explains why covalent molecules tend to have lower melting and boiling points.
Although covalent molecules have definite shapes and possess shared electron pairs, these characteristics have little influence on the melting and boiling points. The focus is instead on how much energy is needed to separate the molecules from one another.
Covalent molecules are not typically three-dimensional structures like ionic compounds or metals which form intricate lattices and require more energy to disrupt. Thus, the primary reason for their lower melting and boiling points is the presence of weak intermolecular forces that can be more easily overcome with minimal energy input.
Pergunta 5 Relatório
Determine the empirical formula of an oxide of sulphur containing 60% of oxygen
[S = 32, O = 16 ]
Detalhes da Resposta
To determine the empirical formula of an oxide of sulfur containing 60% of oxygen, we have to understand the concept of empirical formulas, which give the simplest whole-number ratio of atoms of each element in a compound.
Step 1: Assume 100g of the compound. In 100g of the compound:
Step 2: Convert masses to moles. Use the molar mass to find moles.
Step 3: Determine the simplest whole-number ratio.
To find the ratio, divide each mole value by the smallest number of moles calculated:
The simplest ratio of S:O is 1:3.
Thus, the empirical formula of the oxide is SO3.
Pergunta 6 Relatório
The amount of Faraday required to discharge 4.5 moles of Al3+ is
Detalhes da Resposta
To determine the amount of Faraday required to discharge 4.5 moles of Al3+ ions, it is essential to understand Faraday's laws of electrolysis and the concept of moles in chemistry.
When discharging Al3+ ions to form aluminum metal (Al), the reduction half-reaction involved is:
Al3+ + 3e- → Al
From this equation, it can be seen that 3 moles of electrons (e-) are required to discharge 1 mole of Al3+ ions to form 1 mole of aluminum metal.
A Faraday is the amount of electric charge carried by one mole of electrons. Therefore, 1 Faraday corresponds to the charge needed to discharge 1 mole of electrons.
Now, to discharge 4.5 moles of Al3+, we need:
4.5 moles of Al3+ × 3 moles of electrons (e-)/mole of Al3+ = 13.5 moles of electrons
Since each Faraday discharges 1 mole of electrons, 13.5 moles of electrons correspond to 13.5 Faradays of charge.
Hence, the amount of Faraday required to discharge 4.5 moles of Al3+ ions is 13.5 Faradays.
Pergunta 7 Relatório
Esterification reaction is analogous to
Detalhes da Resposta
The **esterification reaction** is analogous to a **condensation reaction**. In chemistry, a **condensation reaction** is a type of chemical reaction where two molecules or functional groups combine to form a larger molecule, with the simultaneous loss of a small molecule, usually water. **Esterification** specifically involves the reaction between an acid (often a carboxylic acid) and an alcohol, resulting in the formation of an **ester** and the release of a molecule of water.
To explain this further, in an esterification reaction:
Conversely, the other types of reactions you've mentioned have different mechanisms:
Therefore, given the nature of how molecules join and release water, it's clear that the **esterification reaction** is analogous to a **condensation reaction**.
Pergunta 8 Relatório
If the solubility of KNO3 at 300 C is 3.10 mol/dm3 a solution containing 303g/dm3 KNO3 is likely to be
Detalhes da Resposta
To determine the condition of the solution containing KNO3 at 300C, let's start by calculating the molarity of the given solution.
The molecular weight of KNO3 (Potassium Nitrate) is approximately:
Thus, KNO3 = 39 + 14 + (16 * 3) = 101 g/mol.
Now, to determine the molarity of the given solution:
Compare with the solubility at 300C:
If we compare the values:
Hence, the solution is unsaturated because it can still dissolve more KNO3 until it reaches the solubility limit of 3.10 mol/dm3.
Pergunta 9 Relatório
The shape of the molecule of Carbon(IV) oxide is
Detalhes da Resposta
The shape of the molecule of Carbon(IV) oxide, also known as carbon dioxide (CO2), is linear. This is because of the following reasons:
Due to this arrangement, carbon dioxide has a symmetric shape, making it non-polar despite having polar covalent bonds. The pulling forces of the two oxygen atoms on either side of the carbon atom cancel each other out, reinforcing its linear configuration.
Pergunta 10 Relatório
The compound of Copper used as a fungicide is
Detalhes da Resposta
The compound of copper that is commonly used as a fungicide is **Copper(II) sulfate**, which is represented by the chemical formula **CuSO4**.
Let's break this down for better understanding:
The other compounds listed do not serve as common fungicides:
Therefore, the correct and widely used copper compound as a fungicide is Copper(II) sulfate (CuSO4).
Pergunta 11 Relatório
A gas that turns lime water milky is likely to be from
Detalhes da Resposta
The gas that turns lime water milky is **Carbon Dioxide**. This is because carbon dioxide reacts with calcium hydroxide, which is the main component of lime water, to form calcium carbonate. This chemical reaction can be represented by the equation:
Ca(OH)2 (aq) + CO2 (g) → CaCO3 (s) + H2O (l)
In this equation, calcium hydroxide ({Ca(OH)2}) in the lime water reacts with carbon dioxide ({CO2}) to produce calcium carbonate ({CaCO3}) and water ({H2O}).
The result is a milky or cloudy appearance due to the formation of insoluble calcium carbonate precipitate in the lime water. This reaction is a common test for the presence of carbon dioxide gas.
Among the options given, **Trioxocarbonate(IV)** is another name for the Carbonate group involving the gas carbon dioxide ({CO2}). Hence, the gas related to Trioxocarbonate(IV) is the one that turns lime water milky.
Pergunta 12 Relatório
Determine the half-life of a first order reaction with constant 4.5 x 10−3 sec−1 .
Detalhes da Resposta
To determine the half-life of a first-order reaction, you can use the formula:
Half-life (\(t_{1/2}\)) = \(\frac{0.693}{k}\)
where \(k\) is the rate constant of the reaction. For the given problem, the rate constant (\(k\)) is 4.5 x 10-3 s-1.
Substituting the value of \(k\) into the formula, we have:
\(t_{1/2} = \frac{0.693}{4.5 \times 10^{-3}}\)
Perform the division:
\(t_{1/2} = \frac{0.693}{4.5 \times 10^{-3}} \approx 154\) s
Therefore, the half-life of the reaction is 154 seconds.
Pergunta 13 Relatório
A type of isomerism that ClCH=CHCl can exhibit is
Detalhes da Resposta
ClCH=CHCl can exhibit geometrical isomerism and positional isomerism. ClCH=CHCl can exhibit positional isomerism because the positions of the functional groups or substituent atoms are different. Positional isomerism occurs when compounds with the same molecular formula have different properties due to the difference in the position of a functional group, multiple bond, or branched chain.
Pergunta 14 Relatório
Benzene formed nitrobenzene at temperature of 600 C when it reacts with mixture of concentrated trioxonitrate(V) acid and concentrated
Detalhes da Resposta
The reaction described is the nitration of benzene to form nitrobenzene. This is an example of an electrophilic aromatic substitution reaction. **Nitration** involves replacing a hydrogen atom on a benzene ring with a nitro group (NO2). This reaction requires a nitrating mixture composed of concentrated nitric acid (trioxonitrate(V) acid) and concentrated sulfuric acid (tetraoxosulphate(VI) acid). Let me explain why:
Nitration is typically carried out using a mixture of **concentrated nitric acid and concentrated sulfuric acid** at a temperature of around **60°C**. The role of sulfuric acid in this mixture is to act as a catalyst and a dehydrating agent. It helps generate the nitronium ion (NO2+), which is the active electrophile that attacks the benzene ring.
Here's a simplified mechanism for this reaction:
None of the other options listed (hydrochloric acid, phosphoric acid, and hydrogen iodide) contain the necessary combination of properties to generate the nitronium ion and facilitate the nitration of benzene.
Therefore, the correct mixture to carry out the nitration of benzene, forming nitrobenzene at a temperature of 60°C, is a combination of **concentrated nitric acid and concentrated sulfuric acid (tetraoxosulphate(VI) acid)**.
Pergunta 15 Relatório
The molecular formular of a hydrocarbon with an empirical formula of CH3 and a molar mass of 30 is
Detalhes da Resposta
To find the molecular formula of a hydrocarbon given its empirical formula and molar mass, you need to compare the empirical formula mass with the given molar mass.
The empirical formula given is CH3. The molar mass of the empirical formula is calculated as follows:
Total empirical formula mass = 12 + 3 = 15 g/mol
The provided molar mass of the compound is 30 g/mol. To determine how many empirical units are in the molecular formula, divide the molecular mass (given) by the empirical formula mass:
Number of empirical units = 30 g/mol / 15 g/mol = 2
Therefore, the molecular formula is twice the empirical formula:
Empirical formula: CH3
Molecular formula: (CH3)2 = C2H6
The correct molecular formula is C2H6.
Pergunta 16 Relatório
The hybridization scheme in ethyne is
Detalhes da Resposta
Ethyne, also known as acetylene, is a simple alkyne with the chemical formula C2H2. In ethyne, each carbon atom is bonded to two other atoms: one hydrogen atom and the other carbon atom. The molecular structure of ethyne is linear, with a triple bond between the two carbon atoms.
To determine the hybridization scheme in ethyne, we need to examine the arrangement of the electron pairs around each carbon atom. In ethyne, each carbon atom is forming two sigma (σ) bonds and two pi (π) bonds. Let's explain:
When we consider the hybridization of the carbon atoms, we focus on the formation of sigma bonds and lone pairs. In ethyne, each carbon atom utilizes two orbitals to form sigma bonds: one with the hydrogen atom and one with the other carbon atom. This implies that each carbon atom in ethyne must use two hybrid orbitals.
The two hybrid orbitals formed by each carbon atom in ethyne are a result of mixing one s orbital with one p orbital. This hybridization is referred to as sp hybridization, characterized by a linear electron geometry. The remaining two unhybridized p orbitals on each carbon atom are responsible for forming the two pi bonds in the triple bond.
In conclusion, the hybridization scheme in ethyne is sp.
Pergunta 17 Relatório
When a specie undergoes oxidation, its
Detalhes da Resposta
When a species undergoes oxidation, it experiences an increase in its oxidation number. Oxidation is a chemical process where a species loses electrons. In terms of oxidation number, electrons have a negative charge, so losing them results in an increase in charge. Thus, the oxidation number of the species becomes more positive or less negative.
To help understand, consider sodium (Na) reacting with chlorine (Cl2) to form sodium chloride (NaCl):
This change clearly shows that when sodium is oxidized, its oxidation number increases.
Therefore, the correct explanation is: a species undergoing oxidation will have its oxidation number increase.
Pergunta 18 Relatório
H2 SO4
C2 H5 OH → C2 H4
1700 C
The reaction above illustrates
Detalhes da Resposta
This reaction illustrates dehydration. In chemistry, dehydration refers to the process of removing water (H2O) from a compound. Let's break down the given reaction to understand this better.
The provided chemical equation is:
C2H5OH → C2H4 + H2O
This equation indicates that ethanol (C2H5OH) is being transformed into ethylene (C2H4) with the production of water (H2O).
The process involves the breaking of bonds in ethanol and the removal of a water molecule, as follows:
This reaction is typically carried out under certain conditions, in this case at a high temperature of 1700°C, to facilitate the dehydration process.
Therefore, this is indeed a dehydration reaction as it involves converting ethanol into ethylene by removing water.
Pergunta 19 Relatório
In the graph above, y represents
Detalhes da Resposta
To understand what y represents in the graph, we need to think about what graphs in chemistry, specifically regarding energy changes in reactions, generally show.
Chemical reaction energy diagrams often depict a reaction's energy change as a curve from the reactants to the products, showing different energy levels throughout the process. The energy required to start a reaction or to transform the reactants into an activated complex (also known as the transition state) is crucial.
The height of this energy barrier is called the activation energy. This is the minimum amount of energy required to start a chemical reaction. The activation energy is represented by the peak in the energy graph between the reactant energy level and the top of the curve.
Therefore, in this context, y represents the activation energy needed for the reaction to proceed. Understanding activation energy is vital as it determines how quickly a reaction will occur. Reactions with a high activation energy tend to happen more slowly because it is less probable that the necessary energy for the reaction to occur spontaneously will be present.
Pergunta 20 Relatório
The shape of ammonia molecule is
Detalhes da Resposta
The shape of the ammonia molecule (NH3) is trigonal pyramidal. To understand why, let's explore the electron and molecular geometry using a simple explanation:
Ammonia consists of one nitrogen (N) atom bonded to three hydrogen (H) atoms. The nitrogen atom has five valence electrons requiring three more electrons to complete its octet. These are acquired by forming covalent bonds with three hydrogen atoms. In addition to the three bonding pairs, there is one lone pair of electrons on the nitrogen atom.
According to the VSEPR (Valence Shell Electron Pair Repulsion) theory, electron pairs, including bonding pairs and lone pairs, repel each other and arrange themselves as far apart as possible to minimize repulsion. In ammonia:
The presence of the lone pair on nitrogen creates a slight distortion, causing the molecule's shape to be trigonal pyramidal rather than perfectly tetrahedral. The lone pair occupies more space and pushes the hydrogen atoms slightly closer together. This results in a pyramidal shape, with nitrogen at the apex, and the three hydrogen atoms forming the base of the pyramid.
The trigonal pyramidal shape of ammonia is a result of this molecular geometry, not to be confused with any of the other options like V-shaped, tetrahedral, or co-planar.
Pergunta 21 Relatório
The amount of water a substance chemically combined with is called water of
Detalhes da Resposta
The amount of water that is chemically combined with a substance is referred to as water of crystallization. This is the water present in the crystalline form of a compound, necessary to maintain the structure of the crystals.
When certain substances crystallize from an aqueous solution, they incorporate a specific amount of water molecules into their crystal lattice structure. These water molecules are an integral part of the crystal and often affect its color, stability, and solubility. The water is combined in stoichiometric amounts, which means it is present in a fixed ratio relative to the rest of the molecule.
An example of this is copper(II) sulfate pentahydrate, which consists of copper(II) sulfate combined with five molecules of water per formula unit, represented as CuSO4·5H2O.
Pergunta 22 Relatório
Which of the following is an air pollutant?
Detalhes da Resposta
An air pollutant is any substance in the air, introduced by natural or human activity, that causes harm or discomfort to living organisms, or damages the environment. Let's analyze the substances mentioned:
1. O2 (Oxygen)
Oxygen is the gas we need to breathe. It's not considered an air pollutant because it is essential for human and animal life, as well as many natural processes.
2. CO (Carbon Monoxide)
Carbon Monoxide is a colorless, odorless gas that is produced by burning fuel (like in cars and factories). This gas can be very dangerous if there is a lot of it, as it can prevent oxygen from entering the bloodstream. Because of its harmful effects, it is considered an air pollutant.
3. H2 (Hydrogen)
Hydrogen, while a flammable gas, is generally not harmful to the air or to organisms when it is released into the environment. Therefore, it is not considered an air pollutant.
4. O3 (Ozone)
Ozone is a bit tricky because it is both good and bad. Higher up in the atmosphere, it forms a layer that protects us from the sun’s UV radiation. However, at ground level, it is a harmful air pollutant. Ground-level ozone can cause health problems such as respiratory difficulties, so in this context, it is considered an air pollutant.
In conclusion, the substances that are considered air pollutants in this context are Carbon Monoxide (CO) and ground-level Ozone (O3).
Pergunta 23 Relatório
The stability of atomic nucleus is determined by ratio of
Detalhes da Resposta
The stability of an atomic nucleus is primarily determined by the neutron/proton ratio. This refers to the number of neutrons in relation to the number of protons within the nucleus. Let's break down why this ratio is crucial for nuclear stability:
The right balance between the number of neutrons and protons helps in achieving nuclear stability.
An imbalance in this ratio often results in an unstable nucleus, leading to radioactive decay as the nucleus attempts to reach a more stable form. This is why the neutron/proton ratio is a fundamental factor in the stability of the atomic nucleus.
Pergunta 24 Relatório
Detalhes da Resposta
When a strong acid reacts with a strong base, the result is the formation of a neutral salt. This reaction is a part of a chemical process known as neutralization.
Let's break it down further:
During a neutralization reaction, the hydrogen ions (H⁺) from the acid combine with the hydroxide ions (OH⁻) from the base to form water (H₂O). Meanwhile, the remaining ions (for example, Na⁺ from NaOH and Cl⁻ from HCl) come together to form a compound known as a salt. This salt does not affect the acidity or basicity of the solution, hence it is considered neutral.
Therefore, the salt formed in such a reaction is a neutral salt, which is what is referred to as a normal salt in the options provided.
Pergunta 25 Relatório
Boyle's law can be expressed mathematically as
Detalhes da Resposta
Boyle's Law describes the relationship between the volume and pressure of a given amount of gas held at a constant temperature. It states that the pressure of a gas is inversely proportional to its volume. In simpler terms, if you decrease the volume of a gas, its pressure increases, provided the temperature remains constant, and vice versa.
The mathematical expression of Boyle's Law is PV = K, where:
This relationship implies that if you multiply the pressure by the volume, the result will always be the same constant as long as no other variables are changed. This is the classic formulation of Boyle's Law, illustrating the inverse relationship between pressure and volume for a gas at constant temperature.
Pergunta 26 Relatório
Solubility curve is a plot of solubility against
Detalhes da Resposta
A solubility curve is a plot of solubility against temperature. Let me explain in a simple way:
Solubility refers to the amount of a substance (solute) that can dissolve in a given quantity of solvent to form a homogeneous solution at a specified condition. The most common factor that affects solubility is the temperature.
Here's why a solubility curve typically involves temperature:
Therefore, plotting solubility against temperature in a solubility curve allows us to visualize and understand how solubility changes with variations in temperature.
Pergunta 27 Relatório
Water gas obtained from the gasification of coke is made up of
Detalhes da Resposta
The gasification of coke to produce water gas involves reacting coke, which is primarily composed of carbon, with steam. The main chemical reaction that occurs is:
C (s) + H2O (g) → CO (g) + H2 (g)
From this reaction, the main constituents of water gas are hydrogen (H2) and carbon monoxide (CO), also known as carbon(II) oxide. Therefore, water gas obtained from the gasification of coke is made up of hydrogen and carbon(II) oxide.
Pergunta 28 Relatório
A major effect of oil pollution in coastal water is
Detalhes da Resposta
One of the major effects of oil pollution in coastal water is the destruction of aquatic life.
When oil spills into a water body, it forms a thin layer called a sheen on the surface of the water. This oil layer blocks sunlight from reaching aquatic plants and phytoplankton, inhibiting their ability to perform photosynthesis. As a result, these plants and microorganisms suffer, impacting the entire food chain.
Moreover, oil can coat the feathers of birds and the fur of marine mammals, which affects their insulation and buoyancy, leading to hypothermia, drowning, or inability to fly. Additionally, the toxic components in oil are harmful if ingested, causing internal damage to fish and other marine organisms. These combined effects can lead to significant mortality in aquatic ecosystems, threatening biodiversity and the natural balance of coastal waters.
Therefore, oil pollution can severely affect the health and survival of aquatic life, creating disruptions that can persist for many years.
Pergunta 29 Relatório
An organic compound contains 53.1% Carbon, 6.2% Hydrogen, 12.4% Nitrogen, and 28.3% Oxygen by mass. What is the molecular formula of the compound if its vapour density is 56.5? [ C =12, H = 1, N = 14, O = 16].
Detalhes da Resposta
To find the molecular formula of the compound, follow these steps:
1. Determine the Empirical Formula:
Start by assuming you have 100 grams of the compound. This means you have:
Now, convert these masses to moles using their atomic masses (C = 12, H = 1, N = 14, O = 16):
Next, divide each by the smallest number of moles to get the simplest ratio:
This gives us the empirical formula: C5H7NO2.
2. Determine the Molecular Formula:
The molecular formula is a multiple of the empirical formula. To determine this multiple, we need to find the empirical formula mass and compare it with the molar mass derived from the given vapor density.
Calculate the empirical formula mass:
The molar mass can be calculated from the vapor density:
Now, find the ratio of the molar mass to the empirical formula mass:
This ratio is approximately 1, indicating the molecular formula is the same as the empirical formula. Since empirical formulas typically should perfectly match the atomic proportions we derive from experiments, our calculations regarding the assumptions on the vapour and empirical formula mass remains our best match.
Therefore, the molecular formula is C5H7NO2.
Pergunta 30 Relatório
An example of an amphoteric oxide is
Detalhes da Resposta
An example of an amphoteric oxide is Al2O3 (aluminum oxide).
Amphoteric oxides are special because they can act as both acidic and basic oxides. This means they can react with both acids and bases to form salts and water, showcasing their dual behavior.
Here is how it works:
In contrast, oxides like CuO (copper(II) oxide) are basic oxides, and K2O (potassium oxide) is a basic oxide as well. They don't exhibit both acidic and basic properties.
Therefore, the amphoteric nature of Al2O3 is what distinguishes it from common oxides that are strictly acidic or basic. This property is crucial in various chemical processes and applications.
Pergunta 31 Relatório
COMPOUND | S | T | U | V | W |
FORMULA | ROR' | RCOOH' | RCOR' | ROH' | RCOOR' |
From the table above, which of these two compounds can form functional group isomers?
Detalhes da Resposta
ROH' and ROR' can form functional group isomers because they are the functional groups of alcohols and ethers, respectively.
Ethers have a pair of alkyl or aromatic groups attached to a linking oxygen atom. ROH is the functional group of alcohols, which are derivatives of water with one hydrogen atom replaced by an alkyl group.
Alcohols (ROH) and ethers (ROR') can form functional group isomers because they have the same chemical formula but different functional groups. E.g CH3 CH2 OH and CH3 OCH3
Pergunta 32 Relatório
147 N + X → 146 C + 11 P
In the reaction above, X is
Detalhes da Resposta
To determine what particle X is, we need to understand the reaction given:
N + X → \146\\ C + \11\ \P
The notation in nuclear reactions is important. The numbers on top (superscripts) are the mass numbers, which represent the total number of protons and neutrons. The numbers on the bottom (subscripts) are the atomic numbers, which represent the number of protons.
Here's what we have:
Let's consider the conservation of mass and charge:
1. **Conservation of Mass Number:** The mass number of the reactants should equal the mass number of the products. If N has a mass number 'a' and X has a mass number 'b', then:
a + b = 146 + 11 = 157
2. **Conservation of Atomic Number:** The total number of protons should also be conserved. If N has an atomic number 'c' and X has an atomic number 'd', then:
c + d = 6 + 1 = 7
To satisfy these rules:
- Option X could be a **neutron**, as neutrons have a mass number of 1 and an atomic number of 0, which means they do not affect the atomic number but contribute to the mass number.
Let's verify:
- Assume X is a neutron with a mass number of 1 and an atomic number of 0, which fits the requirement for conservation of atomic mass:
Therefore, X is a neutron because it helps conserve both the mass number and the atomic number in the given nuclear reaction.
Pergunta 33 Relatório
An example of highly unsaturated hydrocarbon is
Detalhes da Resposta
To determine a highly unsaturated hydrocarbon, we must first understand the concept of saturation in hydrocarbons. **Saturated hydrocarbons** are compounds that contain the maximum possible number of hydrogen atoms, single-bonded to carbon atoms, and they are alkanes. **Unsaturated hydrocarbons** have one or more double or triple bonds between carbon atoms, which reduces the number of hydrogen atoms that can be bonded.
Examining the given options:
Based on this analysis, **C2H2** (ethyne) is a highly unsaturated hydrocarbon due to the presence of a **triple bond**. The triple bond signifies a greater level of unsaturation compared to double bonds in hydrocarbons like ethene (C2H4).
Pergunta 34 Relatório
When n = 3, the quantum number of an element is
Detalhes da Resposta
Quantum numbers are a set of numbers that describe the position and energy of an electron in an atom.
When the quantum number is equal to 3, the possible values for the azimuthal quantum number are 0, 1, and 2:
The three possible sub-shells when n=3 are 3s, 3p, and 3d.
Pergunta 35 Relatório
A gas when mixed with oxygen, it produces a very hot and early controllable flame. What is the name of the flame and where is it used?
Detalhes da Resposta
The Oxy-ethylene flame is a type of flame produced when oxygen is mixed with a gas called ethylene. This mixture results in a flame that is extremely hot and can be easily controlled. Such a flame is often used in industrial applications related to cutting and welding metals. The heat generated by an oxy-ethylene flame is sufficient to melt metals, allowing them to be welded together or cut apart efficiently.
Pergunta 36 Relatório
The number of molecules of helium gas contained in 11.5g of the gas is
Detalhes da Resposta
To find the number of molecules of helium gas in a given mass, we can use Avogadro's number and the molar mass of helium.
Step 1: Determine the molar mass of helium.
Helium is a noble gas with an atomic mass of approximately 4 grams per mole (g/mol).
Step 2: Calculate the number of moles in 11.5 grams of helium.
The formula to find the number of moles is:
Number of moles = Mass (g) / Molar Mass (g/mol)
So for helium:
Number of moles = 11.5 g / 4 g/mol = 2.875 moles
Step 3: Use Avogadro's number to find the number of molecules.
Avogadro's number is 6.022 x 1023 molecules per mole.
The formula to find the number of molecules is:
Number of molecules = Number of moles x Avogadro's Number
Number of molecules = 2.875 moles x 6.022 x 1023 molecules/mole
Number of molecules ≈ 1.73 x 1024 molecules
Therefore, the number of molecules of helium gas in 11.5g of helium is approximately 1.73 x 1024.
Pergunta 37 Relatório
The reaction of hydrogen and chlorine to produce hydrogen chloride gas is explosive in
Detalhes da Resposta
The reaction between hydrogen and chlorine to produce hydrogen chloride gas is explosive in sunlight. This is because sunlight contains a broad range of electromagnetic radiation, including ultraviolet (UV) light, which is energetic enough to initiate the reaction.
Here is a simplified explanation:
In contrast, other forms of light like diffused light, infrared light, and Raman light do not provide enough energy to initiate this explosive reaction because they lack the necessary UV component found in sunlight.
Pergunta 38 Relatório
Alkanoates are naturally found in
Detalhes da Resposta
Alkanoates, also known as fatty acid esters, are primarily found in lipids. Lipids are a broad group of naturally occurring molecules that include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), and others. One of the main components of lipids is fatty acids and their derivatives, such as alkanoates.
To be more specific, alkanoates can be found in the form of triglycerides, which are the main constituents of body fat in humans and animals, as well as vegetable fat. Triglycerides are composed of glycerol bound to three fatty acids, and these fatty acids are usually present in the form of alkanoates.
Unlike proteins and rubber, which are made up of amino acids and polymers of isoprene respectively, lipids are the primary class of biomolecules where these alkanoate compounds can be found in significant amounts.
Pergunta 39 Relatório
Cx Hy O + 5O2 → 4CO2 + 4H2 O
Cx Hy O in the equation is
Detalhes da Resposta
Cx Hy O + 5O2 → 4CO2 + 4H2 O
On balancing the equation, we should have
X = 4 , y = 8 and O = 2 ⇒ C4 H8 O2
Since 2 is a common factor to the three atoms, we can divide through by 2, considering the fact that that formula is not in the option.
We finally have C2 H4 O
Pergunta 40 Relatório
How many moles of CO2 are produced when ethanol is burnt with 6g of oxygen
Detalhes da Resposta
To determine how many moles of carbon dioxide (CO2) are produced when ethanol is burnt with 6g of oxygen, we need to understand the balanced chemical equation for the combustion of ethanol. The reaction is as follows:
C2H5OH + 3O2 → 2CO2 + 3H2O
This equation tells us that 1 mole of ethanol (C2H5OH) reacts with 3 moles of oxygen (O2) to produce 2 moles of carbon dioxide (CO2).
First, let's calculate how many moles of oxygen 6 g represents. The molecular weight of oxygen (O2) is approximately 32 g/mol. Therefore, the number of moles of oxygen is:
Number of moles of O2 = 6 g / 32 g/mol = 0.1875 moles
According to the balanced equation, 3 moles of O2 produce 2 moles of CO2. Hence, the relationship between moles of O2 and moles of CO2 is:
2 moles of CO2 / 3 moles of O2 = x moles of CO2 / 0.1875 moles of O2
Solving for x, we have:
x = (2/3) * 0.1875 = 0.125
Therefore, 0.125 moles of CO2 are produced when 6g of oxygen is used to burn ethanol.
Gostaria de prosseguir com esta ação?