Laden....
|
Druk & Houd Vast om te Verslepen |
|||
|
Klik hier om te sluiten |
|||
Vraag 1 Verslag
The property of wave shown in the diagram above is?
Antwoorddetails
The property of the wave shown in the diagram is diffraction.
Diffraction is the bending or spreading out of waves as they encounter an obstacle or pass through an opening. It occurs when waves encounter an obstacle that is comparable in size to their wavelength.
In the diagram, you can see that the wave is encountering an opening or a slit, and as a result, it is spreading out or bending around the edges of the opening. This bending or spreading out is characteristic of diffraction.
Diffraction is an important phenomenon in wave behavior and is observed in various situations, such as when sound waves pass through a doorway or when light waves pass through a narrow slit. It helps us understand how waves interact with obstacles and openings in their path.
In summary, the property of the wave shown in the diagram is diffraction, which is the bending or spreading out of waves as they encounter an obstacle or pass through an opening.
Vraag 2 Verslag
Which of the following is an example of a couple?
Antwoorddetails
A couple is a pair of forces that are equal in magnitude but opposite in direction, and that are applied to a body at different points. The forces of a couple do not produce any translation, but they do produce a rotation.
Vraag 3 Verslag
A missile is launched with a speed of 75 ms-1 at an angle of 22° above the surface of a warship. Find the horizontal range achieved by the missile. Ignore the effects of air resistance.
[Take g = 10 ms-1]
Vraag 4 Verslag
Rainbow formation is as a result of the combination of which of the following phenomena?
(i) Reflection
(ii) Dispersion
(iii) Total internal reflection
(iv) Refraction
Antwoorddetails
As light ray enters a drop of water the light is refracted at the surface and at the end of the drop, it is totally internally reflected in which the reflected light returns to the front surface, where it again undergoes refraction as it moves from water to air. The result of this is a dispersed light of colours of different wavelengths.
Vraag 5 Verslag
A man swung an object of mass 2 kg in a circular path with a rope 1.2 m long. If the object was swung at 120 rev/min, find the tension in the rope.
Antwoorddetails
To find the tension in the rope, we can first use the formula for centripetal force, which is given by:
F_centripetal = (m * v^2) / r
where: - F_centripetal is the centripetal force - m is the mass of the object - v is the velocity of the object - r is the radius of the circular path
In this case, the mass of the object (m) is given as 2 kg and the radius (r) is given as 1.2 m.
Now, to find the velocity (v), we need to convert the given value of 120 rev/min to m/s.
Here's how we can do that:
1. First, convert the revolutions per minute (rev/min) to revolutions per second (rev/s) by dividing by 60 (since there are 60 seconds in a minute):
120 rev/min = 120/60 rev/s = 2 rev/s
2. Next, we need to convert the revolutions per second to the linear velocity in meters per second (m/s). To do this, we need to find the circumference of the circular path.
The circumference of a circle is given by the formula:
C = 2πr where r is the radius of the circular path.
Substituting the value of the radius (r = 1.2 m) into the formula, we have:
C = 2π * 1.2 = 2.4π Now, to find the linear velocity (v), we can multiply the circumference (C) by the number of revolutions per second (2 rev/s):
v = C * rev/s = 2.4π * 2 = 4.8π m/s
Now that we have the values of m (2 kg) and v (4.8π m/s), we can substitute them into the centripetal force formula to find the tension in the rope:
F_centripetal = (m * v^2) / r = (2 * (4.8π)^2) / 1.2
Simplifying further:
F_centripetal = (2 * 23.04π^2) / 1.2
F_centripetal = 38.4π^2
Finally, to get a numerical value for the tension in the rope, we can approximate the value of π to 3.14 and calculate the centripetal force:
F_centripetal ≈ 38.4 * 3.14^2 ≈ 379 N
Therefore, the tension in the rope is approximately 379 N.
Therefore, the correct answer is 379.
Vraag 6 Verslag
The pinhole camera works on
Antwoorddetails
The pinhole camera works on the principle of the rectilinear propagation of light. This principle states that light travels in straight lines. When light passes through the tiny hole in a pinhole camera, it forms an inverted image on the opposite side of the camera. The size of the image depends on the distance between the object and the pinhole.
Vraag 7 Verslag
When light of a certain frequency is incident on a metal surface, no photoelectrons are emitted. If the frequency of the light is increased, what happens to the stopping potential?
Antwoorddetails
When light of a certain frequency is incident on a metal surface, no photoelectrons are emitted. This is because the energy of the photons in the light is not enough to overcome the work function of the metal, which is the minimum amount of energy required to remove an electron from the metal surface.
If the frequency of the light is increased, it means that the energy of the photons increases. This increase in energy means that there is now enough energy to overcome the work function of the metal. As a result, photoelectrons are now emitted from the metal surface.
Now, let's consider the stopping potential. The stopping potential is the minimum potential difference that needs to be applied across a pair of electrodes in order to stop the flow of photoelectrons from reaching the other electrode.
When the frequency of the light is increased, the energy of the photons also increases. This means that the photoelectrons have more kinetic energy when they are emitted from the metal surface. As a result, a higher stopping potential is required to stop the more energetic photoelectrons from reaching the other electrode.
Therefore, the stopping potential increases when the frequency of the light is increased.
Vraag 8 Verslag
A relative density bottle has a mass of 19 g when empty. When it is completely filled with water, its mass is 66 g. What will be its mass if completely filled with alcohol of relative density 0.8?
Antwoorddetails
Let mb=mass of empty bottle,
mw
=mass of water only and
ma
= mass of alcohol only
given; mb
=19g
mb
+ mw
= 66g
mb
+ ma
= ?
R.d=0.8
R.d=mass of alcohol
massofalcoholmassofequalvolumeofwater
mass of equal volume of water = mw
=66-19=47g
0.8 = ma47
ma
=0.8×47 =37.6g
mb
+ ma
= 19+37.6=56.6g
Vraag 9 Verslag
Find the tension in the two cords shown in the figure above. Neglect the mass of the cords, and assume that the angle is 38° and the mass m is 220 kg
[Take g = 9.8 ms-2]
Antwoorddetails
W = mg = 220 x 9.8 = 2156 N
⇒Sin 38º = 2156T1
⇒ T1 = 2156Sin38
⇒ T1 = 3502 N
Cos 38º = T2T1
⇒ T2 = 3502 x Cos 38º
⇒ T2 = 2760 N
; T1
= 3502 N, T2
= 2760 N.
Vraag 10 Verslag
Which of the following liquids has the highest surface tension?
Antwoorddetails
Surface tension is a property of liquids that arises due to the cohesive forces between the molecules at the surface. It can be thought of as the "skin" or "film" that forms on the surface of a liquid.
Considering the options given:
- Water: Water molecules have strong cohesive forces, allowing them to form hydrogen bonds with each other. As a result, water has relatively high surface tension.
- Mercury: Mercury is a metal with metallic bonding, which is much stronger than the cohesive forces in liquids. As a result, mercury has very high surface tension.
- Oil: Oils typically consist of nonpolar molecules, which have weaker cohesive forces compared to polar molecules like water. Therefore, oil generally has lower surface tension than water.
Based on this information, we can conclude that mercury has the highest surface tension among these liquids.
Vraag 11 Verslag
A lorry accelerates uniformly in a straight line with acceleration of 4ms-1 and covers a distance of 250 m in a time interval of 10 s. How far will it travel in the next 10 s?
Antwoorddetails
Vraag 12 Verslag
The electrolyte used in the Nickel-Iron (NiFe) accumulator is
Antwoorddetails
The electrolyte used in the Nickel-Iron (NiFe) accumulator is **potassium hydroxide solution**.
In a Nickel-Iron accumulator, the electrolyte is the substance that allows the flow of electric current between the electrodes. It is essential for the proper functioning of the accumulator.
Potassium hydroxide solution is the ideal electrolyte for the NiFe accumulator due to its properties. It has good electrical conductivity, which means it allows the movement of ions between the positive and negative electrodes, enabling the flow of electrons and facilitating the charging and discharging process.
In addition to good conductivity, potassium hydroxide solution also has other beneficial properties for the NiFe accumulator. It is stable, ensuring a longer lifespan for the accumulator. It is also less prone to self-discharge, meaning the accumulator can retain its charge for a longer period without significant loss.
Therefore, the electrolyte used in the Nickel-Iron (NiFe) accumulator is potassium hydroxide solution.
Vraag 13 Verslag
An open-tube mercury manometer is used to measure the pressure in a gas tank. When the atmospheric pressure is 101,325 Pa
, what is the absolute pressure in Pa
in the tank if the height of the mercury in the open tube is 25 cm higher
Vraag 14 Verslag
The number of holes in an intrinsic semiconductor
Antwoorddetails
The number of holes in an intrinsic semiconductor is equal to the number of free electrons.
In an intrinsic semiconductor, the valence band is completely filled with electrons. However, due to thermal energy, some of these electrons can gain enough energy to jump to the conduction band, leaving behind holes in the valence band.
For every electron that moves to the conduction band, a hole is created in the valence band. Since the number of electrons and holes is equal, the number of holes in an intrinsic semiconductor is equal to the number of free electrons.
Therefore, the correct option is: is equal to the number of free electrons.
Vraag 15 Verslag
The terminals of a battery of emf 24.0 V and internal resistance of 1.0 Ω is connected to an external resistor 5.0 Ω. Find the terminal p.d.
Antwoorddetails
To find the terminal p.d. (potential difference), we need to consider the concept of voltage in a circuit. Voltage is the amount of electrical energy per unit charge provided by a power source, in this case, the battery.
In this problem, we are given:
EMF (electromotive force) of the battery = 24.0 V
Internal resistance of the battery = 1.0 Ω
External resistor = 5.0 Ω
When the battery is connected to the external resistor, a current will flow in the circuit. This current is determined by Ohm's law, which states that the current flowing in a circuit is directly proportional to the voltage applied and inversely proportional to the resistance:
I = V / R
where:
I is the current flowing in the circuit
V is the voltage applied
R is the resistance of the circuit
In this case, the voltage applied is the emf of the battery, and the resistance is the sum of the internal resistance and the external resistor.
We can calculate the current flowing in the circuit:
I = 24.0V / (1.0Ω + 5.0Ω) = 24.0V / 6.0Ω = 4.0A
Now, the terminal p.d. is the voltage drop across the external resistor. We can calculate it using Ohm's law:
V = I * R
Substituting the values:
V = 4.0A * 5.0Ω = 20.0V
Therefore, the terminal p.d. is 20.0V.
Vraag 16 Verslag
Three forces with magnitudes 16 N, 12 N and 21 N are shown in the diagram below. Determine the magnitude of their resultant force and angle with the x-axis
Antwoorddetails
Vraag 17 Verslag
The diagram above illustrates the penetrating power of some types of radiation. X, Y and Z are likely
Antwoorddetails
The penetrating power of alpha rays, beta rays, and gamma rays varies greatly. Alpha particles can be blocked by a few pieces of paper. Beta particles pass through paper but are stopped by aluminum foil. Gamma rays are the most difficult to stop and require concrete, lead, or other heavy shielding to block them.
Therefore, X = γ-ray; Y = α-particle; Z = β-particle
Vraag 18 Verslag
What is the name of the model of the atom that describes electrons as orbiting the nucleus in specific energy levels?
Antwoorddetails
The name of the model of the atom that describes electrons as orbiting the nucleus in specific energy levels is the Bohr model.
The Bohr model was proposed by Danish physicist Niels Bohr in 1913. According to this model, electrons revolve around the nucleus in specific energy levels or shells. Each energy level corresponds to a certain amount of energy that an electron possesses. The energy levels are represented by whole numbers, with the closest energy level to the nucleus having the lowest energy and subsequent energy levels having higher energies.
Bohr's model also stated that electrons can only exist in certain fixed orbits around the nucleus. These orbits have a specific distance from the nucleus and are called stationary states. Electrons can move between these energy levels by absorbing or emitting energy in the form of photons.
The Bohr model successfully explained the observed emission and absorption spectra of atoms, as well as the stability of atoms. However, it has limitations in fully describing the behavior of electrons. It does not accurately represent the path or trajectory of electrons and does not account for other quantum effects.
Overall, the Bohr model provides a simplified and understandable framework for visualizing the arrangement of electrons in an atom, with electrons occupying specific energy levels or shells around the nucleus.
Vraag 19 Verslag
Which of the following thermometers measures temperature from the thermal radiation emitted by objects?
Antwoorddetails
A pyrometer thermometer measures temperature from the thermal radiation emitted by objects.
When objects are heated, they emit thermal radiation, which is a form of electromagnetic radiation. This radiation is primarily in the infrared wavelength range. A pyrometer thermometer is specifically designed to measure the intensity of this thermal radiation and convert it into a temperature reading.
The pyrometer thermometer works based on the principle of measuring the amount of thermal radiation reaching the sensor. This is done using a detector that is sensitive to the infrared wavelength range. The detector absorbs the thermal radiation emitted by the object and generates an electrical signal proportional to the intensity of the radiation.
The electrical signal from the detector is then processed by the thermometer's electronics to calculate and display the corresponding temperature. The calibration of the thermometer ensures accurate temperature readings based on the known relationship between the intensity of thermal radiation and temperature.
Pyrometer thermometers are commonly used in industrial applications where contact-based temperature measurement methods are not feasible or accurate enough. They can measure temperatures of objects from a distance without physically touching them, which makes them suitable for measuring high temperatures, moving objects, or objects in hazardous or inaccessible environments.
Therefore, the pyrometer thermometer is the correct option for measuring temperature from thermal radiation emitted by objects.
Vraag 20 Verslag
A wire of radius 0.2 mm is extended by 0.5% of its length when supported by a load of 1.5 kg. Determine the Young's modulus for the material of the wire.
[Take g = 10 ms-2]
Vraag 21 Verslag
Light of wavelength 589 nm in vacuum passes through a piece of fused quartz of index of refraction n = 1.458. What is the frequency of the light in fused quartz?
[Speed of light c = 3 *10^8ms-1]
Vraag 22 Verslag
The working of the beam balance is based on the principle of
Antwoorddetails
The working of the beam balance is based on the principle of moments.
Moments, also known as torques, are a measure of the turning effect of a force. In the case of the beam balance, it is the moments that help determine the equilibrium or balance of the system.
The beam balance consists of a beam or lever that is supported at a pivot point called the fulcrum. On either end of the beam, there are pans where the objects to be weighed are placed.
When objects of different weights are placed on the pans, the beam becomes unbalanced. This causes the beam to tilt towards the side with the heavier object. However, in order to achieve equilibrium or balance, the moments on both sides of the beam must be equal.
The moment of a force is calculated by multiplying the magnitude of the force by the perpendicular distance from the point of rotation (the fulcrum) to the line of action of the force.
By adjusting the position of the counterweights or by moving the objects on the pans, the moment on each side of the beam can be balanced, resulting in the beam becoming level or horizontal. This indicates that the weights on both sides are equal.
Therefore, the beam balance operates on the principle of moments, where the balance is achieved by equalizing the moments on both sides of the fulcrum.
Vraag 23 Verslag
What is the amount of heat required to raise the temperature of a 0.02 kg of ice cube from −10oC to 10oC ?
[specific latent heat of fusion of ice = 3.34 x 105 Jkg−1, Specific heat capacity of water = 4200 Jkg−1 k−1
Specific heat capacity of ice = 2100 Jkg−1k−1
Vraag 24 Verslag
The pitch of a musical note is determined by the frequency of the sound wave that it produces. If two instruments have the same frequency, which of the following factors will most affect the difference in their pitches?
Antwoorddetails
The frequency of a sound wave is proportional to the tension of the string. If two instruments have the same frequency, but one has a tighter string, then the instrument with the tighter string will have a higher pitch.
The other factors listed, such as the size of the instrument, the material of the instrument, and the shape of the instrument, will also affect the pitch of the instrument, but they will have a smaller effect than the tension of the string.
Vraag 25 Verslag
A charge of 4.6×10−5
C is placed in an electric field of intensity 3.2×104
Vm−1
. What is the force acting on the electron?
Antwoorddetails
To calculate the force acting on the charge in an electric field, we can use the formula: F = q * E Where: F is the force acting on the charge, q is the charge of the particle, and E is the electric field intensity. In this case, the charge is given as 4.6 × 10^(-5) C and the electric field intensity is given as 3.2 × 10^4 V/m. Substituting these values into the formula: F = (4.6 × 10^(-5) C) * (3.2 × 10^4 V/m) To multiply numbers in scientific notation, we multiply the coefficients and add the exponents: F = (4.6 * 3.2) * (10^(-5 + 4)) C * V/m F = 14.72 * 10^(-1) C * V/m To simplify, we can convert the result to standard form: F = 1.472 C * V/m Therefore, the force acting on the charge is **1.472 N**.
Vraag 26 Verslag
The near point of a patient's eye is 50.0 cm. What power (in diopters) must a corrective lens have to enable the eye to see clearly an object 25.0 cm away?
Vraag 27 Verslag
In an AC circuit, resonance occurs when the impedance of the circuit is:
Antwoorddetails
In an AC circuit, resonance occurs when the impedance of the circuit is minimum.
Impedance is the total opposition to the flow of alternating current in a circuit, and it consists of two components: resistance (R) and reactance (X).
Reactance can be further divided into two types: inductive reactance (XL) and capacitive reactance (XC).
At resonance, the inductive reactance and the capacitive reactance are equal in magnitude and opposite in sign. This means that their effects cancel each other out, resulting in a minimum total reactance.
Since impedance is the combination of resistance and reactance, when the reactance is at its minimum, the impedance of the circuit is also at its minimum.
So, in summary, resonance occurs in an AC circuit when the impedance is minimum. At resonance, the inductive reactance and the capacitive reactance cancel each other out, resulting in a minimum total reactance and minimum impedance.
Vraag 28 Verslag
A metal sphere is placed on an insulating stand. A negatively charged rod is brought close to it. If the sphere is earthed and the rod is taken away, what will be the charge on the sphere?
Antwoorddetails
When a negatively charged rod is brought close to a metal sphere, the free electrons in the sphere are repelled from the rod and move to the other end of the sphere. This creates a region of positive charge on the side of the sphere closest to the rod, and a region of negative charge on the opposite side. The process of charge distribution stops when the net force on the free electrons inside the metal is equal to zero.
If the sphere is then earthed, the free electrons will flow from the sphere to the ground, leaving the sphere with a net positive charge.
Vraag 29 Verslag
A 200 kg load is raised using a 110 m long lever as shown in the diagram above. The load is 10m from the pivot P. If the efficiency of the the lever is 80%, find the effort E required to lift the load.
[Take g = 10ms-2]
Antwoorddetails
To find the effort E required to lift the load, we first need to understand the concept of mechanical efficiency in levers.
A lever is a simple machine that consists of a rigid beam (lever arm) that pivots around a fixed point called the fulcrum. In this case, the fulcrum is point P.
The mechanical efficiency of a lever is defined as the ratio of the output work done (load lifted) to the input work done (effort applied). Mathematically, it can be expressed as:
Efficiency = (Output Work / Input Work) * 100%
In this problem, the load is the output work and the effort is the input work.
Given: Load = 200 kg Length of lever (distance between fulcrum and load) = 10 m Efficiency = 80% Gravitational acceleration (g) = 10 m/s^2
To calculate the effort, let's first calculate the output work:
Output Work = Load * Distance lifted
The distance lifted is equal to the length of the lever arm, which is 10 m.
Output Work = 200 kg * 10 m = 2000 kg·m
Since 1 kg·m is equivalent to 10 J (1 Joule), we can convert the units:
Output Work = 2000 kg·m * 10 J/kg·m = 20000 J
Now, let's calculate the input work:
Input Work = Effort * Distance moved by the effort
The distance moved by the effort is the length of the lever arm, which is 110 m.
Input Work = Effort * 110 m
Using the formula for mechanical efficiency, we can rewrite it as:
Efficiency = (Output Work / Input Work) * 100%
Solving for the effort:
Effort = (Output Work / (Efficiency/100)) / Distance moved by the effort
Effort = (20000 J / (80/100)) / 110 m
Simplifying the equation:
Effort = (20000 J / 0.8) / 110 m
Effort = 250 J / m
Given that g = 10 m/s^2, we know that 1 N = 1 kg·m/s^2. Therefore, we can convert the units:
Effort = (250 J / m) / (1 kg·m/s^2 / 1 N)
Effort = 250 N
Therefore, the effort E required to lift the load is 250 N.
Vraag 30 Verslag
Which of the following materials is a good insulator?
Antwoorddetails
A good insulator is a material that does not easily allow heat or electricity to pass through it. It acts as a barrier, preventing the flow of heat or electricity. Out of the given options, rubber is a good insulator.
Rubber is made up of long chains of molecules that are closely packed together. These chains do not allow the easy movement of heat or electricity. This means that when heat or electricity tries to pass through rubber, it encounters resistance, making it difficult for it to flow.
In contrast, materials like silver, water, and copper are good conductors rather than insulators.
Silver is an excellent conductor of electricity and heat because its atoms have loosely bound electrons that are free to move. This allows for the easy transfer of heat or electricity throughout the material.
Water is also a good conductor of both heat and electricity. It contains charged particles called ions that can carry electric current. Additionally, water molecules are able to transfer heat through convection.
Copper is widely used in electrical wiring because it is an excellent conductor of electricity. Like silver, its atoms have free electrons that can move easily and transfer electrical energy.
Therefore, rubber is the material that serves as a good insulator, while silver, water, and copper are good conductors of heat and electricity.
Vraag 31 Verslag
A 35 kΩ is connected in series with a resistance of 40 kΩ. What resistance R must be connected in parallel with the combination so that the equivalent resistance is equal to 25 kΩ?
Antwoorddetails
For the combination in series;
⇒R1 = 35kΩ + 40kΩ = 75kΩ
R is combined with 75kΩ in parallel to give 25kΩ
= 1Req
= 1R
+ 1R
= 125
= 1R
+ 175
= 125
- 175
+ 1R
= 3−175
= 1R
= 275
= 1R
= 752
= R
; R = 37.5k Ω
Vraag 32 Verslag
An air bubble of radius 4.5 cm initially at a depth of 12 m below the water surface rises to the surface. If the atmospheric pressure is equal to 10.34 m of water, the radius of the bubble just before it reaches the water surface is
Vraag 33 Verslag
The branch of physics that deals with the motion of objects and the forces acting on them is called:
Antwoorddetails
The branch of physics that deals with the motion of objects and the forces acting on them is called mechanics.
Mechanics is the foundation of physics that studies how objects move and interact under the influence of forces. It encompasses both the study of the motion of macroscopic objects, such as cars and planets, and the behavior of microscopic particles, such as atoms and molecules.
Mechanics is divided into two main branches:
Therefore, when referring to the branch of physics that specifically focuses on the motion of objects and the forces acting on them, the correct answer is mechanics.
Vraag 34 Verslag
Which process is responsible for production of energy in stars?
Antwoorddetails
The process responsible for the production of energy in stars is nuclear fusion.
Nuclear fusion is the process where two or more atomic nuclei come together to form a heavier nucleus. In stars, the fusion of hydrogen nuclei (protons) into helium nuclei is the main source of energy.
Here's how it works:
This ongoing fusion process in stars is called stellar nucleosynthesis. It occurs throughout the star's lifetime until the available hydrogen in the core is depleted. At this point, depending on the star's mass, different fusion reactions may take place, leading to the production of heavier elements.
In summary, nuclear fusion, the fusion of hydrogen nuclei into helium nuclei, is the process responsible for the production of energy in stars.
Vraag 35 Verslag
Which of the following types of electromagnetic waves is used in night vision goggles?
Antwoorddetails
Night vision goggles use infrared waves to enable the user to see in the dark.
Infrared waves are a type of electromagnetic radiation that have longer wavelengths than visible light. They fall between the visible and microwave regions on the electromagnetic spectrum. Unlike visible light, which is visible to the human eye, infrared waves cannot be seen without the use of specialized devices such as night vision goggles.
When it is dark, objects do not emit visible light that can be detected by the human eye. However, they do emit heat in the form of infrared radiation. Night vision goggles work by detecting and amplifying this infrared radiation, which is then converted into visible light that can be seen by the user.
The goggles contain an image intensifier tube that is sensitive to infrared radiation. This tube amplifies the incoming infrared light and converts it into an image that can be seen through the goggles. The resulting image appears green because the human eye is more sensitive to green light.
Therefore, to see in the dark, night vision goggles use infrared waves to detect and amplify the infrared radiation emitted by objects. This enables the user to have enhanced vision in low-light conditions or complete darkness.
Vraag 36 Verslag
A 400 N box is being pushed across a level floor at a constant speed by a force P of 100 N at an angle of 30.0° to the horizontal, as shown in the the diagram below. What is the coefficient of kinetic friction between the box and the floor?
Antwoorddetails
W = 400 N; P = 100 N; θ = 30o; μ = ?
Frictional force (Fr) = μR (where R is the normal reaction)
The forces acting along the horizontal direction are Fr and Px
∴ Pcos 30° - Fr = ma (Pcos 30° is acting in the +ve x-axis while Fr in the -ve x-axis)
⇒ 100cos 30° - μR = ma
Since the box is moving at constant speed, its acceleration is zero
⇒ 100cos 30° - μR = 0
⇒ 100cos 30o = μR ----- (i)
The forces acting in the vertical direction are W, Py and R
∴ R - Psin 30° - W = 0 (R is acting upward (+ve) while Py and W are acting downward (-ve) and they are at equilibrium)
⇒ R - 100sin 30° - 400 = 0
⇒ R = 100sin 30° + 400
⇒ R = 50 + 400 = 450 N
From equation (i)
⇒ 100cos 30° = 450μ
⇒μ=100cos30°
N = 100cos30°450
= μ = 0.19
Vraag 37 Verslag
A simple pendulum, has a period of 5.77 seconds. When the pendulum is shortened by 3 m, the period is 4.60 seconds. Calculate the new length of the pendulum
Vraag 38 Verslag
How much work is done against the gravitational force on a 3.0 kg object when it is carried from the ground floor to the roof of a building, a vertical climb of 240 m?
Antwoorddetails
To calculate the work done against gravitational force, we can use the formula:
Work = Force x Distance
In this case, the force we are working against is the gravitational force. The gravitational force is the force with which the Earth pulls objects towards its center. The formula for gravitational force is:
Force = Mass x Acceleration due to gravity
The mass of the object is given as 3.0 kg. The acceleration due to gravity on Earth is approximately 9.8 m/s^2.
Now, we need to find the distance the object is being carried, which is 240 m.
Plugging these values into the formulas, we have:
Force = 3.0 kg x 9.8 m/s^2 = 29.4 N
Work = 29.4 N x 240 m
Therefore, the work done against the gravitational force is equal to 29.4 N x 240 m = 7056 J = 7.1 kJ (rounded to one decimal place).
So, the correct answer is 7.2 kJ.
Vraag 39 Verslag
From the diagram above, if the potential difference across the resistor, capacitor and inductor are 60V, 120V and 30V respectively, the effective potential difference is
Antwoorddetails
Vraag 40 Verslag
Which of the following statements regarding the application of electrical conduction via gases is/are correct?
Electrical conduction in gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Photocells
(iv) Cathode ray oscilloscope/T.V. tubes
Antwoorddetails
Electrical conduction of gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Advertising industry/Neon signs
(iv) Cathode ray oscilloscope/T.V. tubes
Wilt u doorgaan met deze actie?