Laden....
|
Druk & Houd Vast om te Verslepen |
|||
|
Klik hier om te sluiten |
|||
Vraag 1 Verslag
Alkanoates are naturally found in
Antwoorddetails
Alkanoates, also known as fatty acid esters, are primarily found in lipids. Lipids are a broad group of naturally occurring molecules that include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), and others. One of the main components of lipids is fatty acids and their derivatives, such as alkanoates.
To be more specific, alkanoates can be found in the form of triglycerides, which are the main constituents of body fat in humans and animals, as well as vegetable fat. Triglycerides are composed of glycerol bound to three fatty acids, and these fatty acids are usually present in the form of alkanoates.
Unlike proteins and rubber, which are made up of amino acids and polymers of isoprene respectively, lipids are the primary class of biomolecules where these alkanoate compounds can be found in significant amounts.
Vraag 2 Verslag
A typical chemical reaction will be spontaneous if
Antwoorddetails
In thermodynamics, a chemical reaction is considered spontaneous when it occurs naturally under a given set of conditions without needing to be driven by an external force. The spontaneity of a reaction is best determined by the Gibbs Free Energy change, denoted as ΔG.
The criteria for spontaneity is as follows:
Now, let's relate this to the given options:
Thus, a chemical reaction is spontaneous when the Gibbs Free Energy change (ΔG) is negative.
Vraag 3 Verslag
Sulphur(IV)oxide can be used as a
Antwoorddetails
Sulphur(IV) oxide has many uses including food preservation, refrigeration, laboratory reagent and solvent, sulphuric acid production, fumigant etc.Sulphur(IV) oxide is a good refrigerant because it has a high heat of evaporation and can be easily condensed.
Vraag 4 Verslag
The compound of Copper used as a fungicide is
Antwoorddetails
The compound of copper that is commonly used as a fungicide is **Copper(II) sulfate**, which is represented by the chemical formula **CuSO4**.
Let's break this down for better understanding:
The other compounds listed do not serve as common fungicides:
Therefore, the correct and widely used copper compound as a fungicide is Copper(II) sulfate (CuSO4).
Vraag 5 Verslag
Fog is a colloid in which
Antwoorddetails
**Fog** is a type of colloid, which is a mixture where very small particles of one substance are evenly distributed throughout another substance. In the case of fog, it consists of tiny **liquid droplets** that are dispersed in a **gas**. Specifically, these are tiny droplets of water suspended in the air. When you walk through fog, you are essentially walking through air that contains these minute water droplets.
Thus, the correct description of fog as a colloid is that it consists of **liquid particles dispersed in a gas medium**. The liquid here is water, and the gas is air.
Vraag 6 Verslag
A gas that turns lime water milky is likely to be from
Antwoorddetails
The gas that turns lime water milky is **Carbon Dioxide**. This is because carbon dioxide reacts with calcium hydroxide, which is the main component of lime water, to form calcium carbonate. This chemical reaction can be represented by the equation:
Ca(OH)2 (aq) + CO2 (g) → CaCO3 (s) + H2O (l)
In this equation, calcium hydroxide ({Ca(OH)2}) in the lime water reacts with carbon dioxide ({CO2}) to produce calcium carbonate ({CaCO3}) and water ({H2O}).
The result is a milky or cloudy appearance due to the formation of insoluble calcium carbonate precipitate in the lime water. This reaction is a common test for the presence of carbon dioxide gas.
Among the options given, **Trioxocarbonate(IV)** is another name for the Carbonate group involving the gas carbon dioxide ({CO2}). Hence, the gas related to Trioxocarbonate(IV) is the one that turns lime water milky.
Vraag 7 Verslag
An example of highly unsaturated hydrocarbon is
Antwoorddetails
To determine a highly unsaturated hydrocarbon, we must first understand the concept of saturation in hydrocarbons. **Saturated hydrocarbons** are compounds that contain the maximum possible number of hydrogen atoms, single-bonded to carbon atoms, and they are alkanes. **Unsaturated hydrocarbons** have one or more double or triple bonds between carbon atoms, which reduces the number of hydrogen atoms that can be bonded.
Examining the given options:
Based on this analysis, **C2H2** (ethyne) is a highly unsaturated hydrocarbon due to the presence of a **triple bond**. The triple bond signifies a greater level of unsaturation compared to double bonds in hydrocarbons like ethene (C2H4).
Vraag 8 Verslag
Heat of solution involves two steps that is accompanied by heat change. The energies involved in this steps are
Antwoorddetails
The heat of solution refers to the overall energy change that occurs when a solute dissolves in a solvent. This process involves breaking and making of intermolecular forces, and it can be broken down into two main steps that are each accompanied by heat change. The energies involved in these steps are:
Lattice energy: This is the energy required to break the bonds between the ions in the solid crystal lattice of the solute. Breaking these bonds requires energy, and this step is usually endothermic, meaning it absorbs heat from the surroundings. The more energy needed to break the lattice, the higher the lattice energy.
Hydration energy: Once the lattice is broken, the ions are surrounded by solvent molecules, typically water, in a process known as hydration. The energy released when the solvent molecules interact with and stabilize the ions is called the hydration energy. This step is usually exothermic, meaning it releases heat into the surroundings.
In conclusion, the two energies involved in the heat of solution are lattice energy and hydration energy. The balance between these two energies determines whether the overall process of dissolving a solute in a solvent is endothermic or exothermic.
Vraag 9 Verslag
23892 U + 10 n → 23992 U
The process above produces
Antwoorddetails
The process described appears to depict a nuclear reaction involving a nuclear transmutation. Let's break down the process:
1. The starting element is initially denoted as "23892", which represents Uranium-238. In nuclear notation, "23892" indicates an atomic mass number of 238 and an atomic number of 92.
2. The next step so happens with the element "238"; however, the numbers remain: "92" indicates that the atomic number is unchanged, suggesting no change in the element. This often means a step in between of hypothetical notation.
3. Then there's the occurrence of adding a "U + 10", which again leaves the original atomic number "92".
4. In subsequent steps, it seems that the number "n" transitions to become "23992". The mass number has increased by one unit, turning the initial isotope into "23992", which represents Uranium-239.
The key point here is the transition from Uranium-238 to Uranium-239, which typically happens through the process of a neutron absorption in which a neutron is added, resulting in a change of the mass number. Such a process often leads to the creation of a radioactive isotope.
Therefore, the process described is indicative of producing a radioactive isotope, specifically Uranium-239.
Vraag 10 Verslag
The constituents of Alnico are Aluminium, Nickel and
Antwoorddetails
Alnico is a type of alloy that is known for its strong magnetic properties. The name "Alnico" comes from the elements it is primarily composed of: Aluminum (Al), Nickel (Ni), and Cobalt (Co). These elements are combined to form an alloy that retains its magnetism well and can operate at high temperatures, making it ideal for applications like electric motors, sensors, and various electronic devices.
While there are different variations of Alnico, the presence of Cobalt (Co) is essential for enhancing the magnetic properties of the alloy. The other elements listed, such as Magnesium (Mg), Manganese (Mn), and Copper (Cu), are not typical core constituents of Alnico. Although trace amounts of other elements like copper may sometimes be included in specific formulations, the primary and most significant component responsible for Alnico's powerful magnetic characteristics is Cobalt (Co).
Vraag 11 Verslag
The element which can combine with oxygen to form an acid anhydride of the form XO2 is
Antwoorddetails
An Acid anhydride can be defined as a non-metal oxide which forms an acidic solution when reacted with water.
Sulphur is the element that can combine with oxygen to form an acid anhydride of the form XO2 .
An acid oxide is a compound that forms an acid when it reacts with water. Non-metals in groups 4–7 form acidic oxides.
Vraag 12 Verslag
Antwoorddetails
When a metal reacts with an acid, a chemical reaction takes place in which the metal displaces the hydrogen in the acid. This reaction produces a salt and hydrogen gas is liberated in the process.
Let's break it down further:
The general equation for the reaction is:
Metal + Acid → Salt + Hydrogen Gas
For example, when zinc (a metal) reacts with hydrochloric acid (an acid), the reaction is as follows:
Zn + 2HCl → ZnCl2 + H2
Here, zinc chloride (a salt) and hydrogen gas are produced. This illustrates that salt and hydrogen gas are formed when a metal reacts with an acid.
Vraag 13 Verslag
The table above shows the formulae of some ions. In which of these compounds is the formula not correct?
Antwoorddetails
To assess the correctness of the chemical formulae for the given compounds, let's break down each compound:
Aluminium Tetraoxosulphate(VI), Al2(SO4)3:
Aluminium ion is denoted as Al3+, and the sulphate ion is SO42-. To balance the charges between the positive and negative ions:
2 x (+3) from aluminium ions = +6
3 x (-2) from sulphate ions = -6
Thus, the charges balance out, making the formula correct.
Calcium Trioxonitrate(V), Ca(NO3)2:
Calcium ion is Ca2+, and the nitrate ion is NO3-. To balance the charges:
1 x (+2) from calcium ion = +2
2 x (-1) from nitrate ions = -2
The charges balance out, therefore, this formula is also correct.
Iron(III) Bromide, Fe3Br:
Iron(III) ion is Fe3+, and bromide ion is Br-. Each iron ion would pair with three bromide ions to balance the charges:
FeBr3, where:
1 x (+3) from iron = +3
3 x (-1) from bromide = -3
The charges balance out in the correct formula which should be FeBr3, making the given formula Fe3Br incorrect.
Potassium Sulphide, K2S:
Potassium ion is K+, and sulphide ion is S2-. To balance the charges:
2 x (+1) from potassium ions = +2
1 x (-2) from sulphide ion = -2
The charges balance out, making this formula correct.
Therefore, the compound with the incorrect formula is Iron(III) Bromide where the proper chemical formula should be FeBr3, not Fe3Br.
Vraag 14 Verslag
The amount of Faraday required to discharge 4.5 moles of Al3+ is
Antwoorddetails
To determine the amount of Faraday required to discharge 4.5 moles of Al3+ ions, it is essential to understand Faraday's laws of electrolysis and the concept of moles in chemistry.
When discharging Al3+ ions to form aluminum metal (Al), the reduction half-reaction involved is:
Al3+ + 3e- → Al
From this equation, it can be seen that 3 moles of electrons (e-) are required to discharge 1 mole of Al3+ ions to form 1 mole of aluminum metal.
A Faraday is the amount of electric charge carried by one mole of electrons. Therefore, 1 Faraday corresponds to the charge needed to discharge 1 mole of electrons.
Now, to discharge 4.5 moles of Al3+, we need:
4.5 moles of Al3+ × 3 moles of electrons (e-)/mole of Al3+ = 13.5 moles of electrons
Since each Faraday discharges 1 mole of electrons, 13.5 moles of electrons correspond to 13.5 Faradays of charge.
Hence, the amount of Faraday required to discharge 4.5 moles of Al3+ ions is 13.5 Faradays.
Vraag 15 Verslag
When a specie undergoes oxidation, its
Antwoorddetails
When a species undergoes oxidation, it experiences an increase in its oxidation number. Oxidation is a chemical process where a species loses electrons. In terms of oxidation number, electrons have a negative charge, so losing them results in an increase in charge. Thus, the oxidation number of the species becomes more positive or less negative.
To help understand, consider sodium (Na) reacting with chlorine (Cl2) to form sodium chloride (NaCl):
This change clearly shows that when sodium is oxidized, its oxidation number increases.
Therefore, the correct explanation is: a species undergoing oxidation will have its oxidation number increase.
Vraag 16 Verslag
The empirical formula of an organic liquid hydrocarbon is XY. If the relative molar masses of X and Y are 72 and 6 respectively, it's vapour density is likely to be
Antwoorddetails
To determine the vapor density of the organic liquid hydrocarbon with the empirical formula XY, we first need to determine the **molecular formula** of the compound, which represents the actual number of atoms of each element in a molecule.
The **relative molar masses** of X and Y are given as 72 and 6, respectively. To find the molar mass of XY, we can add these values together:
Molar mass of XY = Molar mass of X + Molar mass of Y = 72 + 6 = 78 g/mol
Vapor density is defined as half of the molar mass of the compound, since vapor density is often compared to hydrogen, where hydrogen is taken as the standard with a molar mass of 2 g/mol. Therefore, vapor density can be calculated using the formula:
Vapor Density = (Molar Mass of the Compound) / 2
Substituting the molar mass of XY:
Vapor Density of XY = 78 / 2 = 39
Therefore, the vapor density of the hydrocarbon with the empirical formula XY is **39**.
Vraag 17 Verslag
In the conductance of aqueous CuSO4 solution, the current carriers are the
Antwoorddetails
In the conductance of aqueous CuSO4 solution, the current carriers are the hydrated ions.
Here's why:
The other options can be understood as follows:
The correct answer is therefore hydrated ions because they enable the conduction of electricity through the aqueous solution.
Vraag 18 Verslag
H2 SO4
C2 H5 OH → C2 H4
1700 C
The reaction above illustrates
Antwoorddetails
This reaction illustrates dehydration. In chemistry, dehydration refers to the process of removing water (H2O) from a compound. Let's break down the given reaction to understand this better.
The provided chemical equation is:
C2H5OH → C2H4 + H2O
This equation indicates that ethanol (C2H5OH) is being transformed into ethylene (C2H4) with the production of water (H2O).
The process involves the breaking of bonds in ethanol and the removal of a water molecule, as follows:
This reaction is typically carried out under certain conditions, in this case at a high temperature of 1700°C, to facilitate the dehydration process.
Therefore, this is indeed a dehydration reaction as it involves converting ethanol into ethylene by removing water.
Vraag 19 Verslag
Which of the following represents an order of increasing reactivity?
Antwoorddetails
To determine the order of increasing reactivity of the elements listed, it's important to understand the general trends in metal reactivity. Metals react by losing electrons, and their reactivity is often influenced by their ability to lose these electrons easily. In many cases, generally, alkali metals are the most reactive, and noble metals are the least reactive. Here's a basic description of the reactivity of the given metals:
With these considerations in mind, the order of increasing reactivity from the given options would be:
Gold (Au) < Copper (Cu) < Tin (Sn) < Iron (Fe) < Calcium (Ca)
This is the order where the least reactive element is first (gold), and the most reactive element is last (calcium). Hence, the correct option represents the order: Au < Cu < Sn < Fe < Ca.
Vraag 20 Verslag
The percentage of carbon(IV) oxide in air is
Antwoorddetails
The air we breathe is made up of a mixture of gases. The most abundant gases in the atmosphere are nitrogen and oxygen, but there are other gases present in smaller amounts, one of which is carbon dioxide, chemically known as carbon(IV) oxide.
Carbon dioxide makes up approximately 0.03% of the Earth's atmosphere by volume. This value can also be expressed in different terms, such as 300 parts per million (ppm). Even though it is a small percentage, carbon dioxide plays a significant role in maintaining the Earth's temperature through the greenhouse effect.
In summary, the percentage of carbon(IV) oxide in air is 0.03%.
Vraag 21 Verslag
Biuret test is a chemical test used for detecting the presence of
Antwoorddetails
The Biuret test is a chemical test used for detecting the presence of proteins. When you perform a Biuret test, you are looking for peptide bonds, which are the connections between the amino acids in a protein. This is how it works:
The test is specifically tailored to proteins because carbohydrates, amines, and alkanoates do not exhibit the required peptide bonds necessary for this color change. Therefore, the Biuret test is not suitable for detecting these compounds.
Vraag 22 Verslag
How many moles of CO2 are produced when ethanol is burnt with 6g of oxygen
Antwoorddetails
To determine how many moles of carbon dioxide (CO2) are produced when ethanol is burnt with 6g of oxygen, we need to understand the balanced chemical equation for the combustion of ethanol. The reaction is as follows:
C2H5OH + 3O2 → 2CO2 + 3H2O
This equation tells us that 1 mole of ethanol (C2H5OH) reacts with 3 moles of oxygen (O2) to produce 2 moles of carbon dioxide (CO2).
First, let's calculate how many moles of oxygen 6 g represents. The molecular weight of oxygen (O2) is approximately 32 g/mol. Therefore, the number of moles of oxygen is:
Number of moles of O2 = 6 g / 32 g/mol = 0.1875 moles
According to the balanced equation, 3 moles of O2 produce 2 moles of CO2. Hence, the relationship between moles of O2 and moles of CO2 is:
2 moles of CO2 / 3 moles of O2 = x moles of CO2 / 0.1875 moles of O2
Solving for x, we have:
x = (2/3) * 0.1875 = 0.125
Therefore, 0.125 moles of CO2 are produced when 6g of oxygen is used to burn ethanol.
Vraag 23 Verslag
The combustion of candle under limited supply of air forms
Antwoorddetails
When a candle burns under a limited supply of air, it doesn't get enough oxygen to completely burn the hydrocarbons in the wax. In complete combustion (with enough air), the candle would ideally produce water (H2O) and carbon dioxide (CO2). However, under limited air supply, the process is incomplete and results in the formation of soot and carbon monoxide (CO).
Here's why:
In summary, under limited air conditions, the combustion of a candle primarily forms soot and carbon monoxide (CO).
Vraag 24 Verslag
For chemical reaction to be spontaneous, ∆G must be
Antwoorddetails
In the context of chemical reactions, the spontaneity of a reaction is determined by the Gibbs Free Energy change, represented by the symbol ΔG. A chemical reaction is considered to be spontaneous if it proceeds on its own without needing continuous external input of energy.
For a reaction to be spontaneous, the value of ∆G must be negative. This is based on the Gibbs Free Energy equation:
ΔG = ΔH - TΔS
Where:
A negative value for ΔG indicates that the process releases energy and will proceed spontaneously. This means the system is moving towards a lower energy and more stable state, naturally favoring the products over the reactants.
In contrast, a positive ΔG indicates that the reaction is non-spontaneous and requires energy input. If ΔG is zero, the system is at equilibrium, meaning there is no net change taking place, but this doesn't indicate spontaneity.
Therefore, in summary, for a reaction to be spontaneous, ∆G must be negative.
Vraag 25 Verslag
A major effect of oil pollution in coastal water is
Antwoorddetails
One of the major effects of oil pollution in coastal water is the destruction of aquatic life.
When oil spills into a water body, it forms a thin layer called a sheen on the surface of the water. This oil layer blocks sunlight from reaching aquatic plants and phytoplankton, inhibiting their ability to perform photosynthesis. As a result, these plants and microorganisms suffer, impacting the entire food chain.
Moreover, oil can coat the feathers of birds and the fur of marine mammals, which affects their insulation and buoyancy, leading to hypothermia, drowning, or inability to fly. Additionally, the toxic components in oil are harmful if ingested, causing internal damage to fish and other marine organisms. These combined effects can lead to significant mortality in aquatic ecosystems, threatening biodiversity and the natural balance of coastal waters.
Therefore, oil pollution can severely affect the health and survival of aquatic life, creating disruptions that can persist for many years.
Vraag 26 Verslag
H2 S(g) + Cl2 (g) → 2HCl(g) + S(s)
What is the change in oxidation state of sulphur from reactant to product?
Antwoorddetails
To determine the change in oxidation state of sulfur, follow these steps:
In the given reaction:
H2S(g) + Cl2(g) → 2HCl(g) + S(s)
We observe:
Thus, the change in oxidation state of sulfur when moving from the reactants to the products is from **-2** to **0**. This indicates that sulfur is being oxidized.
The correct answer is that the oxidation state of sulfur changes from **-2 to 0**.
Vraag 27 Verslag
The amount of water a substance chemically combined with is called water of
Antwoorddetails
The amount of water that is chemically combined with a substance is referred to as water of crystallization. This is the water present in the crystalline form of a compound, necessary to maintain the structure of the crystals.
When certain substances crystallize from an aqueous solution, they incorporate a specific amount of water molecules into their crystal lattice structure. These water molecules are an integral part of the crystal and often affect its color, stability, and solubility. The water is combined in stoichiometric amounts, which means it is present in a fixed ratio relative to the rest of the molecule.
An example of this is copper(II) sulfate pentahydrate, which consists of copper(II) sulfate combined with five molecules of water per formula unit, represented as CuSO4·5H2O.
Vraag 28 Verslag
The ions responsible for permanent hardness in water are sulphates of
Antwoorddetails
Permanent hardness in water is mainly caused by the presence of certain metal ions, specifically the **sulfates (SO₄²⁻)** and **chlorides (Cl⁻)** of calcium (Ca) and magnesium (Mg). These compounds do not precipitate out when the water is boiled, which means they remain dissolved and continue to contribute to the hardness of the water.
Among the options you provided, the ions responsible for permanent hardness in water are the **sulfates of calcium (Ca²⁺)** and **magnesium (Mg²⁺)**. The presence of calcium sulfate (CaSO₄) and magnesium sulfate (MgSO₄) in water keeps it hard.
When compared to temporary hardness, which can be removed by boiling the water to precipitate bicarbonates, **permanent hardness cannot be removed by boiling**. Instead, methods such as ion exchange or the use of water softeners are required to remove these ions from the water.
In summary, the ions causing permanent hardness in water are the **sulfates of calcium (Ca²⁺)** and **magnesium (Mg²⁺)**. These ions remain dissolved and continue to make the water hard, despite boiling.
Vraag 29 Verslag
The product formed when ethyne is passed through a hot tube containing finely divided iron is
Antwoorddetails
When **ethyne** (also known as acetylene) is passed through a hot tube containing finely divided iron, a process called decomposition occurs. The heat causes the ethyne molecules to break down, and under these conditions, they **re-combine** to form structures that result in more complex molecules.
The key transformation involves the conversion of these ethyne molecules into **aromatic compounds**. Aromatic compounds, such as **benzene**, have a distinct ring structure and are characterized by **stability** due to resonance (a phenomenon where electrons are delocalized over a certain structure, providing extra stability).
Thus, when ethyne is passed through a hot iron tube, it undergoes trimerization to form benzene, an **aromatic** compound. Therefore, the product formed is **aromatic**.
Vraag 30 Verslag
An example of a compound that is acidic in solution is
Antwoorddetails
Phosphoric acid is a weak acid that can donate three hydrogen ions in water. Phosphoric acid partially ionizes when dissolved in an aqueous solution.
Vraag 31 Verslag
Strong acids can be distinguished from weak acids by any of the following methods, EXCEPT
Antwoorddetails
To distinguish between strong acids and weak acids, we can employ several methods based on their chemical properties:
Conductivity Measurement: Strong acids dissociate completely in water, releasing more ions. Because ion concentration is directly related to electrical conductivity, strong acids exhibit higher conductivity than weak acids, which only partially dissociate.
Litmus Paper: This method helps determine if a solution is acidic or basic but does not provide detailed information about the strength (strong or weak) of an acid. Both strong and weak acids turn blue litmus red. Therefore, **litmus paper cannot effectively distinguish between a strong and a weak acid.**
Measurement of pH: Strong acids have a lower pH because they fully dissociate to release more hydrogen ions (H+), whereas weak acids have a relatively higher pH as they do not dissociate completely. Thus, pH measurement can distinguish the extent of acidity.
Measurement of Heat of Reaction: The heat of reaction can give insights into the strength of an acid because it involves the degree of ionization and the energetics associated with it. A strong acid will exhibit a different calorimetric response compared to a weak acid.
In summary, **litmus paper is not suitable for distinguishing between a strong and a weak acid**, as it only indicates acidity but does not reveal the strength of the acid.
Vraag 32 Verslag
The composition of alloy permalloy is iron and
Antwoorddetails
The alloy known as **permalloy** is composed primarily of **iron** and **nickel**. Permalloy is a well-known magnetic alloy that typically consists of about **80% nickel and 20% iron**. It is renowned for having high magnetic permeability, meaning it can become magnetized easily, which makes it extremely useful in a variety of electrical and magnetic applications, such as transformers, memory storage, and magnetic shielding. The nickel in permalloy enhances the magnetic properties of the iron, giving the alloy its unique characteristics.
Vraag 33 Verslag
Hydrochloric acid is regarded as a strong acid because it
Antwoorddetails
Hydrochloric acid (HCl) is regarded as a strong acid because it ionizes completely in water. This means that when HCl is dissolved in water, it breaks down entirely into hydrogen ions (H+) and chloride ions (Cl-). In a solution, there are no molecules of HCl left; only its ions are present.
This complete ionization results in a high concentration of hydrogen ions, which is a key characteristic of strong acids. Because there are more hydrogen ions available, hydrochloric acid can readily participate in chemical reactions, particularly those involving proton transfers, like neutralization reactions with bases.
In summary, the reason HCl is considered strong is due to its ability to consistently and completely ionize in an aqueous solution, not because of its physical state, source, or reactive nature with bases. Therefore, the property that defines it as a strong acid is that it ionizes completely.
Vraag 34 Verslag
The pH of a 0.001 mol dm−3 of H2 SO4 is
[Log10 2 = 0.3]
Antwoorddetails
The question is asking about the pH of a 0.001 mol dm−3 solution of H2SO4 (sulfuric acid). To find the pH, we need to understand how sulfuric acid dissociates in water.
Step 1: Dissociation of H2SO4
Sulfuric acid, H2SO4, is a strong acid and dissociates completely in water in two steps:
1. The first dissociation: H2SO4 → H+ + HSO4-
2. The second dissociation: HSO4- → H+ + SO42-
For dilute solutions, particularly below 0.1 M, the first dissociation provides the major contribution to the H+ concentration. The second dissociation also contributes slightly to the acidity, but for simplicity and due to the dilute nature of this solution, the first step's contribution is primarily considered.
Step 2: Calculate the H+ Concentration
Since this is a strong acid and dissociates completely, for every 1 mole of H2SO4, we get 2 moles of H+. Therefore, for a 0.001 mol dm−3 solution of H2SO4, the concentration of H+ ions will be:
2 x 0.001 = 0.002 mol dm−3
Step 3: Calculate the pH
The pH is calculated using the formula: pH = -log[H+]
Substitute the H+ concentration:
pH = -log(0.002)
We know that log(10-2) = -2 and log(2) = 0.3 (as provided), so:
pH = -(log(2) + log(10-3))
pH = -(0.3 - 3)
pH = 3 - 0.3
pH = 2.7
Therefore, the pH of the 0.001 mol dm−3 H2SO4 solution is 2.7.
Vraag 35 Verslag
The quantity of electricity required to deposit 180g of Ag from a molten silver trioxonitrate(V) is
[Ag = 108]
Antwoorddetails
To determine the quantity of electricity required to deposit 180g of Ag (silver) from molten silver trioxonitrate(V), we need to understand the concept of electrolysis. During electrolysis, a metal can be deposited according to Faraday's laws of electrolysis.
The equivalent weight of a substance is calculated by dividing the atomic mass by the valency. For silver (Ag), the atomic mass is given as 108 and the valency of silver in AgNO3 is 1. This makes the equivalent weight of Ag 108 g/equivalent.
According to Faraday's first law of electrolysis:
Mass of substance deposited = (Equivalent weight × Quantity of electricity (in coulombs) ) / Faraday's constant (96500 C/mol)
Let's calculate the number of equivalents of silver deposited:
Number of equivalents of Ag = Mass of Ag / Equivalent weight = 180 g / 108 g/equivalent = 5/3 equivalents
The quantity of electricity required to deposit 1 equivalent of a substance is 1 Faraday (F) = 96500 C.
Therefore, the total quantity of electricity required:
Quantity of electricity = Number of equivalents × Faraday's constant
Quantity of electricity = (5/3 equivalents) × 1 F = 5/3 F = 1.67 F
Therefore, 1.67 Faraday is required to deposit 180g of Ag from a molten silver trioxonitrate(V).
Vraag 36 Verslag
Scandium is not regarded as a transition metal because its ion has
Antwoorddetails
Scandium is not regarded as a transition metal because its ion has no electron in the d-orbital.
To understand this, let's first define a transition metal. A transition metal is defined as an element that has an incomplete d-subshell in either its elemental form or in any of its common oxidation states.
When Scandium (Sc) loses electrons to form its most common ion (Sc3+), it loses three electrons. These electrons are removed from the 4s and 3d orbitals. The electron configuration for Scandium is [Ar] 3d1 4s2. Upon losing three electrons to form Sc3+, the resulting electron configuration is [Ar], which means there are:
As a result, there are no electrons in the d-orbital of the Scandium ion, which does not meet the criteria for a transition metal.
Vraag 37 Verslag
An example of a physical change is
Antwoorddetails
A physical change involves a change in the physical properties of a substance, without a change in its chemical composition. This means that the substance remains the same at the molecular level, despite how it might appear differently.
An example of a physical change from the given options is the liquefaction of liquids. In this process, a substance transitions from a solid or gas to a liquid state. This change is purely physical because the molecular structure of the substance does not change; only its state or form does. Importantly, such a change is usually reversible, meaning the substance can return to its original state. For instance, water can change into ice (frozen) or steam (vapor), and can still revert back to liquid water.
On the other hand, the other options involve chemical changes, where the original substances undergo chemical reactions to form new substances with different properties, thus altering the molecular structure depending on the option.
Vraag 38 Verslag
Esterification reaction is analogous to
Antwoorddetails
The **esterification reaction** is analogous to a **condensation reaction**. In chemistry, a **condensation reaction** is a type of chemical reaction where two molecules or functional groups combine to form a larger molecule, with the simultaneous loss of a small molecule, usually water. **Esterification** specifically involves the reaction between an acid (often a carboxylic acid) and an alcohol, resulting in the formation of an **ester** and the release of a molecule of water.
To explain this further, in an esterification reaction:
Conversely, the other types of reactions you've mentioned have different mechanisms:
Therefore, given the nature of how molecules join and release water, it's clear that the **esterification reaction** is analogous to a **condensation reaction**.
Vraag 39 Verslag
25.0g of potassium chloride were dissolved in 80g of distilled water at 300 C. Calculate the solubility of the solute in mol dm3 . [K =39, Cl = 35.5]
Antwoorddetails
To calculate the solubility of potassium chloride (KCl) in mol dm3, we need to follow these steps:
Molar mass of KCl = 39 + 35.5 = 74.5 g/mol
Moles of KCl = Mass of KCl / Molar mass of KCl = 25.0 g / 74.5 g/mol = 0.3356 mol
Convert ml to liters: 80 ml = 0.080 L
Concentration = Moles of solute / Volume of solvent in liters = 0.3356 mol / 0.080 L = 4.195 mol/dm3
The solubility of potassium chloride at 30°C in mol/dm3 is therefore approximately 4.2 mol/dm3.
Vraag 40 Verslag
Which of the following is an air pollutant?
Antwoorddetails
An air pollutant is any substance in the air, introduced by natural or human activity, that causes harm or discomfort to living organisms, or damages the environment. Let's analyze the substances mentioned:
1. O2 (Oxygen)
Oxygen is the gas we need to breathe. It's not considered an air pollutant because it is essential for human and animal life, as well as many natural processes.
2. CO (Carbon Monoxide)
Carbon Monoxide is a colorless, odorless gas that is produced by burning fuel (like in cars and factories). This gas can be very dangerous if there is a lot of it, as it can prevent oxygen from entering the bloodstream. Because of its harmful effects, it is considered an air pollutant.
3. H2 (Hydrogen)
Hydrogen, while a flammable gas, is generally not harmful to the air or to organisms when it is released into the environment. Therefore, it is not considered an air pollutant.
4. O3 (Ozone)
Ozone is a bit tricky because it is both good and bad. Higher up in the atmosphere, it forms a layer that protects us from the sun’s UV radiation. However, at ground level, it is a harmful air pollutant. Ground-level ozone can cause health problems such as respiratory difficulties, so in this context, it is considered an air pollutant.
In conclusion, the substances that are considered air pollutants in this context are Carbon Monoxide (CO) and ground-level Ozone (O3).
Wilt u doorgaan met deze actie?