Laden....
|
Druk & Houd Vast om te Verslepen |
|||
|
Klik hier om te sluiten |
|||
Vraag 1 Verslag
Calculate the mass of Magnesium that will be liberated from its salt by the same quantity of electricity that liberated 16.0 g of Silver.
[Mg = 24.0, Ag = 108 ]
Antwoorddetails
To solve this problem, we must consider the concept of electrochemistry and Faraday's laws of electrolysis. These laws are crucial for determining the mass of a substance liberated during electrolysis.
Faraday's first law states that the mass of a substance liberated is directly proportional to the quantity of electricity that passes through the electrolyte. The mass can be calculated using the formula:
m = (Q * M) / (n * F)
Where:
For silver (Ag), the chemical reaction at the cathode is:
Ag⁺ + e⁻ → Ag
This shows that **1 mole of electrons** is required to discharge **1 mole** of silver ions.
For magnesium (Mg), the chemical reaction at the cathode is:
Mg²⁺ + 2e⁻ → Mg
This means that **2 moles of electrons** are required to discharge **1 mole** of magnesium ions.
Given:
First, find the number of moles of Ag liberated:
Number of moles of Ag = 16 g / 108 g/mol = 0.1481 mol
The same quantity of electricity will be used to liberate an equivalent in moles of electrons for Mg.
0.1481 moles of Ag require 0.1481 moles of electrons, equivalent to:
0.1481 moles of electrons for Mg. Since Mg requires 2 moles of electrons for 1 mole of Mg:
Number of moles of Mg = 0.1481 / 2 = 0.07405 mol
Finally, calculate the mass of Mg liberated:
m = 0.07405 mol * 24 g/mol = 1.7772 g
Rounding this to the closest answer provided:
The mass of magnesium that will be liberated is approximately **1.78 g**.
Vraag 2 Verslag
The IUPAC nomenclature of the compound above is
Antwoorddetails
The IUPAC nomenclature of the compound above is 2-methylpropan-2-ol.
Vraag 3 Verslag
The highest isotope of hydrogen is
Antwoorddetails
Hydrogen has three naturally occurring isotopes, and each of them contains the same number of protons but different numbers of neutrons. Let's briefly differentiate them:
The highest isotope of hydrogen is tritium because it has the most neutrons and, therefore, the greatest atomic mass compared to the other isotopes. It is also noteworthy that tritium is radioactive, while the other hydrogen isotopes are stable.
Vraag 4 Verslag
| COMPOUND | S | T | U | V | W |
| FORMULA | ROR' | RCOOH' | RCOR' | ROH' | RCOOR' |
From the table above, which of these two compounds can form functional group isomers?
Antwoorddetails
ROH' and ROR' can form functional group isomers because they are the functional groups of alcohols and ethers, respectively.
Ethers have a pair of alkyl or aromatic groups attached to a linking oxygen atom. ROH is the functional group of alcohols, which are derivatives of water with one hydrogen atom replaced by an alkyl group.
Alcohols (ROH) and ethers (ROR') can form functional group isomers because they have the same chemical formula but different functional groups. E.g CH3 CH2 OH and CH3 OCH3
Vraag 5 Verslag
The combustion of candle under limited supply of air forms
Antwoorddetails
When a candle burns under a limited supply of air, it doesn't get enough oxygen to completely burn the hydrocarbons in the wax. In complete combustion (with enough air), the candle would ideally produce water (H2O) and carbon dioxide (CO2). However, under limited air supply, the process is incomplete and results in the formation of soot and carbon monoxide (CO).
Here's why:
In summary, under limited air conditions, the combustion of a candle primarily forms soot and carbon monoxide (CO).
Vraag 6 Verslag
One of the following is not a water pollutant?
Antwoorddetails
Water pollutants are substances that, when introduced into the water, cause harm to ecosystems, human health, and the overall quality of the water. Each of the options provided has the potential to be considered a water pollutant, except for one. Let's explain them:
1. Inorganic fertilizers: These are substances mainly composed of synthetic chemicals, including nitrates and phosphates. When these fertilizers enter water bodies, they can lead to nutrient pollution, which causes excessive growth of algae (eutrophication), leading to a decrease in oxygen levels in the water, harming aquatic life.
2. Warm water affluent: This refers to the discharge of heated water into natural water bodies. This heat contamination can change the temperature of the water, affecting the metabolism of aquatic life and leading to thermal pollution.
3. Oxygen gas: Oxygen gas is a fundamental component of the Earth's atmosphere and is not considered a water pollutant. In fact, dissolved oxygen is crucial for the survival of aquatic organisms. Rather than causing any harm, adequate levels of dissolved oxygen in water bodies are essential for maintaining healthy aquatic ecosystems.
4. Biodegradable waste: These are organic materials that decompose in the environment. When introduced in large quantities into water bodies, they can consume a significant amount of dissolved oxygen as they decompose, which can lead to depletion of oxygen levels and cause harm to aquatic life, making them pollutants in aquatic ecosystems.
Given the explanations above, oxygen gas is the option that is not a water pollutant. It is vital for the health of aquatic ecosystems, unlike the other options, which can all lead to some form of pollution in water bodies.
Vraag 7 Verslag
127g of sodium chloride was dissolved in 1.0dm3 of distilled water at 250 C . Determine the solubility in moldm−3 of sodium chloride at that temperature. [Na = 23, Cl = 35.5]
Antwoorddetails
To determine the solubility of sodium chloride (NaCl) in mol/dm3 at the given temperature, you need to first calculate the number of moles of NaCl dissolved.
Step 1: Calculate the molar mass of NaCl.
The molar mass of a compound is found by adding the atomic masses of its constituent elements:
- Sodium (Na) has an atomic mass of 23.
- Chlorine (Cl) has an atomic mass of 35.5.
Thus, the molar mass of NaCl = 23 + 35.5 = 58.5 g/mol.
Step 2: Calculate the number of moles of NaCl.
The formula to calculate moles is:
Number of moles = Mass (g) / Molar mass (g/mol)
Given mass of NaCl = 127 g,
Number of moles = 127 g / 58.5 g/mol ≈ 2.17 mol
Step 3: Calculate the solubility in mol/dm3.
Since the sodium chloride is dissolved in 1.0 dm3 of water, the solubility is the same as the number of moles, since the volume is already 1.0 dm3.
Therefore, the solubility of sodium chloride at that temperature is 2.17 mol/dm3.
Rounded to the options given, 2.17 mol/dm3 is approximately equal to 2.2 mol/dm3.
Vraag 8 Verslag
If 11.0g of a gas occupies 5.6 dm3 at s.t.p., calculate its vapour density (1 mole of a gas occupies 22.4 dm3 ).
Antwoorddetails
The problem requires calculating the **vapor density** of the gas. Vapor density is defined as the mass of a certain volume of a gas compared to the mass of an equal volume of hydrogen, where the hydrogen standard is 2 g/mol (as the molecular weight of hydrogen gas, H₂, is 2).
Here's a step-by-step explanation:
The calculated vapor density of the gas is 22.
Vraag 9 Verslag
The stability of atomic nucleus is determined by ratio of
Antwoorddetails
The stability of an atomic nucleus is primarily determined by the neutron/proton ratio. This refers to the number of neutrons in relation to the number of protons within the nucleus. Let's break down why this ratio is crucial for nuclear stability:
The right balance between the number of neutrons and protons helps in achieving nuclear stability.
An imbalance in this ratio often results in an unstable nucleus, leading to radioactive decay as the nucleus attempts to reach a more stable form. This is why the neutron/proton ratio is a fundamental factor in the stability of the atomic nucleus.
Vraag 10 Verslag
Fog is a colloid in which
Antwoorddetails
**Fog** is a type of colloid, which is a mixture where very small particles of one substance are evenly distributed throughout another substance. In the case of fog, it consists of tiny **liquid droplets** that are dispersed in a **gas**. Specifically, these are tiny droplets of water suspended in the air. When you walk through fog, you are essentially walking through air that contains these minute water droplets.
Thus, the correct description of fog as a colloid is that it consists of **liquid particles dispersed in a gas medium**. The liquid here is water, and the gas is air.
Vraag 11 Verslag
23892 U + 10 n → 23992 U
The process above produces
Antwoorddetails
The process described appears to depict a nuclear reaction involving a nuclear transmutation. Let's break down the process:
1. The starting element is initially denoted as "23892", which represents Uranium-238. In nuclear notation, "23892" indicates an atomic mass number of 238 and an atomic number of 92.
2. The next step so happens with the element "238"; however, the numbers remain: "92" indicates that the atomic number is unchanged, suggesting no change in the element. This often means a step in between of hypothetical notation.
3. Then there's the occurrence of adding a "U + 10", which again leaves the original atomic number "92".
4. In subsequent steps, it seems that the number "n" transitions to become "23992". The mass number has increased by one unit, turning the initial isotope into "23992", which represents Uranium-239.
The key point here is the transition from Uranium-238 to Uranium-239, which typically happens through the process of a neutron absorption in which a neutron is added, resulting in a change of the mass number. Such a process often leads to the creation of a radioactive isotope.
Therefore, the process described is indicative of producing a radioactive isotope, specifically Uranium-239.
Vraag 12 Verslag
The empirical formula of an organic liquid hydrocarbon is XY. If the relative molar masses of X and Y are 72 and 6 respectively, it's vapour density is likely to be
Antwoorddetails
To determine the vapor density of the organic liquid hydrocarbon with the empirical formula XY, we first need to determine the **molecular formula** of the compound, which represents the actual number of atoms of each element in a molecule.
The **relative molar masses** of X and Y are given as 72 and 6, respectively. To find the molar mass of XY, we can add these values together:
Molar mass of XY = Molar mass of X + Molar mass of Y = 72 + 6 = 78 g/mol
Vapor density is defined as half of the molar mass of the compound, since vapor density is often compared to hydrogen, where hydrogen is taken as the standard with a molar mass of 2 g/mol. Therefore, vapor density can be calculated using the formula:
Vapor Density = (Molar Mass of the Compound) / 2
Substituting the molar mass of XY:
Vapor Density of XY = 78 / 2 = 39
Therefore, the vapor density of the hydrocarbon with the empirical formula XY is **39**.
Vraag 13 Verslag
How many moles of CO2 are produced when ethanol is burnt with 6g of oxygen
Antwoorddetails
To determine how many moles of carbon dioxide (CO2) are produced when ethanol is burnt with 6g of oxygen, we need to understand the balanced chemical equation for the combustion of ethanol. The reaction is as follows:
C2H5OH + 3O2 → 2CO2 + 3H2O
This equation tells us that 1 mole of ethanol (C2H5OH) reacts with 3 moles of oxygen (O2) to produce 2 moles of carbon dioxide (CO2).
First, let's calculate how many moles of oxygen 6 g represents. The molecular weight of oxygen (O2) is approximately 32 g/mol. Therefore, the number of moles of oxygen is:
Number of moles of O2 = 6 g / 32 g/mol = 0.1875 moles
According to the balanced equation, 3 moles of O2 produce 2 moles of CO2. Hence, the relationship between moles of O2 and moles of CO2 is:
2 moles of CO2 / 3 moles of O2 = x moles of CO2 / 0.1875 moles of O2
Solving for x, we have:
x = (2/3) * 0.1875 = 0.125
Therefore, 0.125 moles of CO2 are produced when 6g of oxygen is used to burn ethanol.
Vraag 14 Verslag
Which of the following is an air pollutant?
Antwoorddetails
An air pollutant is any substance in the air, introduced by natural or human activity, that causes harm or discomfort to living organisms, or damages the environment. Let's analyze the substances mentioned:
1. O2 (Oxygen)
Oxygen is the gas we need to breathe. It's not considered an air pollutant because it is essential for human and animal life, as well as many natural processes.
2. CO (Carbon Monoxide)
Carbon Monoxide is a colorless, odorless gas that is produced by burning fuel (like in cars and factories). This gas can be very dangerous if there is a lot of it, as it can prevent oxygen from entering the bloodstream. Because of its harmful effects, it is considered an air pollutant.
3. H2 (Hydrogen)
Hydrogen, while a flammable gas, is generally not harmful to the air or to organisms when it is released into the environment. Therefore, it is not considered an air pollutant.
4. O3 (Ozone)
Ozone is a bit tricky because it is both good and bad. Higher up in the atmosphere, it forms a layer that protects us from the sun’s UV radiation. However, at ground level, it is a harmful air pollutant. Ground-level ozone can cause health problems such as respiratory difficulties, so in this context, it is considered an air pollutant.
In conclusion, the substances that are considered air pollutants in this context are Carbon Monoxide (CO) and ground-level Ozone (O3).
Vraag 15 Verslag
The product formed when ethyne is passed through a hot tube containing finely divided iron is
Antwoorddetails
When **ethyne** (also known as acetylene) is passed through a hot tube containing finely divided iron, a process called decomposition occurs. The heat causes the ethyne molecules to break down, and under these conditions, they **re-combine** to form structures that result in more complex molecules.
The key transformation involves the conversion of these ethyne molecules into **aromatic compounds**. Aromatic compounds, such as **benzene**, have a distinct ring structure and are characterized by **stability** due to resonance (a phenomenon where electrons are delocalized over a certain structure, providing extra stability).
Thus, when ethyne is passed through a hot iron tube, it undergoes trimerization to form benzene, an **aromatic** compound. Therefore, the product formed is **aromatic**.
Vraag 16 Verslag
When Calcium ethynide is decomposed by water, the gas produced is
Antwoorddetails
When water reacts with calcium ethynide, the gas produced is ethyne (also known as acetylene), which is represented by the chemical formula C2H2.
The chemical reaction involved is as follows:
CaC2 + 2 H2O → C2H2 + Ca(OH)2
Let's break down this process to make it understandable:
The key point to remember here is that the gas produced is **ethyne (C2H2)**, which is useful in various industrial applications, such as welding and as a precursor for other chemicals.
Vraag 17 Verslag
For chemical reaction to be spontaneous, ∆G must be
Antwoorddetails
In the context of chemical reactions, the spontaneity of a reaction is determined by the Gibbs Free Energy change, represented by the symbol ΔG. A chemical reaction is considered to be spontaneous if it proceeds on its own without needing continuous external input of energy.
For a reaction to be spontaneous, the value of ∆G must be negative. This is based on the Gibbs Free Energy equation:
ΔG = ΔH - TΔS
Where:
A negative value for ΔG indicates that the process releases energy and will proceed spontaneously. This means the system is moving towards a lower energy and more stable state, naturally favoring the products over the reactants.
In contrast, a positive ΔG indicates that the reaction is non-spontaneous and requires energy input. If ΔG is zero, the system is at equilibrium, meaning there is no net change taking place, but this doesn't indicate spontaneity.
Therefore, in summary, for a reaction to be spontaneous, ∆G must be negative.
Vraag 18 Verslag
When the subsidiary quantum numbers (l) equals 1, the shape of the orbital is
Antwoorddetails
The subsidiary quantum number, often referred to as the azimuthal quantum number or angular momentum quantum number, is denoted by l. This quantum number defines the shape of the atomic orbital. The value of l determines the type of orbital as follows:
For l = 1, the atomic orbital is a p orbital, which is characterized by its dumb-bell shape. This means that the electron density is concentrated in two lobes on opposite sides of the nucleus, resembling a dumb-bell.
Vraag 19 Verslag
Cx Hy O + 5O2 → 4CO2 + 4H2 O
Cx Hy O in the equation is
Antwoorddetails
Cx Hy O + 5O2 → 4CO2 + 4H2 O
On balancing the equation, we should have
X = 4 , y = 8 and O = 2 ⇒ C4 H8 O2
Since 2 is a common factor to the three atoms, we can divide through by 2, considering the fact that that formula is not in the option.
We finally have C2 H4 O
Vraag 20 Verslag
An oxide of nitrogen that can rekindle a glowing splint is
Antwoorddetails
The ability to rekindle a glowing splint is an indicator of the presence of an oxidizing agent, typically oxygen or a substance that releases oxygen. Among oxides of nitrogen, only a few are capable of doing this.
Nitrogen(I) oxide, commonly known as nitrous oxide (N2O), is not a strong enough oxidizer to rekindle a glowing splint.
Nitrogen(II) oxide, known as nitric oxide (NO), is not stable in the presence of oxygen and does not have the ability to rekindle a glowing splint because it does not actively release oxygen.
Nitrogen(IV) oxide or nitrogen dioxide (NO2), can support combustion by releasing oxygen as it decomposes. It is a brown gas and an effective oxidizer.
Dinitrogen tetraoxide (N2O4) is in equilibrium with nitrogen dioxide (NO2). However, at standard conditions, it is not as effective an oxidizer for rekindling a glowing splint as pure NO2.
In conclusion, the oxide of nitrogen that can rekindle a glowing splint is nitrogen(IV) oxide or nitrogen dioxide (NO2) due to its ability to release oxygen and support combustion.
Vraag 21 Verslag
An example of an amphoteric oxide is
Antwoorddetails
An example of an amphoteric oxide is Al2O3 (aluminum oxide).
Amphoteric oxides are special because they can act as both acidic and basic oxides. This means they can react with both acids and bases to form salts and water, showcasing their dual behavior.
Here is how it works:
In contrast, oxides like CuO (copper(II) oxide) are basic oxides, and K2O (potassium oxide) is a basic oxide as well. They don't exhibit both acidic and basic properties.
Therefore, the amphoteric nature of Al2O3 is what distinguishes it from common oxides that are strictly acidic or basic. This property is crucial in various chemical processes and applications.
Vraag 22 Verslag
Heat of solution involves two steps that is accompanied by heat change. The energies involved in this steps are
Antwoorddetails
The heat of solution refers to the overall energy change that occurs when a solute dissolves in a solvent. This process involves breaking and making of intermolecular forces, and it can be broken down into two main steps that are each accompanied by heat change. The energies involved in these steps are:
Lattice energy: This is the energy required to break the bonds between the ions in the solid crystal lattice of the solute. Breaking these bonds requires energy, and this step is usually endothermic, meaning it absorbs heat from the surroundings. The more energy needed to break the lattice, the higher the lattice energy.
Hydration energy: Once the lattice is broken, the ions are surrounded by solvent molecules, typically water, in a process known as hydration. The energy released when the solvent molecules interact with and stabilize the ions is called the hydration energy. This step is usually exothermic, meaning it releases heat into the surroundings.
In conclusion, the two energies involved in the heat of solution are lattice energy and hydration energy. The balance between these two energies determines whether the overall process of dissolving a solute in a solvent is endothermic or exothermic.
Vraag 23 Verslag
The principle which states that no two electrons in the same orbitals of an atom have same value for all four quantum numbers is the
Antwoorddetails
The principle that states that no two electrons in the same orbitals of an atom can have the same value for all four quantum numbers is the Pauli Exclusion Principle.
To understand this principle, it's important to know a bit about the structure of an atom and what quantum numbers are:
Quantum Numbers:
1. **Principal Quantum Number (n):** This describes the energy level or shell of the electron.
2. **Angular Momentum Quantum Number (l):** This describes the subshell or shape of the orbital (s, p, d, f...).
3. **Magnetic Quantum Number (ml):** This describes the specific orbital within a subshell where the electron is located.
4. **Spin Quantum Number (ms):** This describes the spin direction of the electron, which can be either +1/2 or -1/2.
The Pauli Exclusion Principle asserts that each electron in an atom has a unique set of these four quantum numbers. While electrons can share the first three quantum numbers if they are in the same orbital (meaning they share the same energy level, the same subshell, and the same specific orbital within that subshell), they must have different Spin Quantum Numbers. This means that in any given orbital, one electron can have a spin of +1/2 and the other must have a spin of -1/2. This principle is fundamental in explaining the electronic structure of atoms and, consequently, the behavior and properties of elements.
Vraag 24 Verslag
Which of the following is used in forming slag in the blast furnace for the extraction of iron?
Antwoorddetails
In the process of extracting iron in a blast furnace, CaCO3, or calcium carbonate, plays a crucial role in forming slag. Here is a simple and comprehensive explanation of how it works:
1. Role of Calcium Carbonate (CaCO3):
Calcium carbonate is commonly used as a flux in the blast furnace. When it is introduced into the furnace, it undergoes a decomposition reaction due to the high temperatures, breaking down into calcium oxide (CaO) and carbon dioxide (CO2).
2. Formation of Slag:
The calcium oxide (CaO) produced then reacts with silicon dioxide (SiO2) present in the iron ore. This reaction forms a liquid slag of calcium silicate. The slag serves two main functions:
Thus, calcium carbonate (CaCO3) is crucial for forming slag by providing the necessary calcium oxide (CaO) that reacts with impurities to form slag during the extraction of iron in a blast furnace.
Vraag 25 Verslag
The IUPAC name of the compound above is
Antwoorddetails
To determine the IUPAC name of a compound, follow these steps:
Hence, by following these steps, if the bromo and methyl groups are both attached to the second carbon (lowest numbering possible), the IUPAC name of the compound is "2-bromo, 2-methyl butane."
Vraag 26 Verslag
The ions responsible for permanent hardness in water are sulphates of
Antwoorddetails
Permanent hardness in water is mainly caused by the presence of certain metal ions, specifically the **sulfates (SO₄²⁻)** and **chlorides (Cl⁻)** of calcium (Ca) and magnesium (Mg). These compounds do not precipitate out when the water is boiled, which means they remain dissolved and continue to contribute to the hardness of the water.
Among the options you provided, the ions responsible for permanent hardness in water are the **sulfates of calcium (Ca²⁺)** and **magnesium (Mg²⁺)**. The presence of calcium sulfate (CaSO₄) and magnesium sulfate (MgSO₄) in water keeps it hard.
When compared to temporary hardness, which can be removed by boiling the water to precipitate bicarbonates, **permanent hardness cannot be removed by boiling**. Instead, methods such as ion exchange or the use of water softeners are required to remove these ions from the water.
In summary, the ions causing permanent hardness in water are the **sulfates of calcium (Ca²⁺)** and **magnesium (Mg²⁺)**. These ions remain dissolved and continue to make the water hard, despite boiling.
Vraag 27 Verslag
The group VIII elements are the inert gases because they
Antwoorddetails
The group VIII elements, also known as the noble gases, are called inert gases primarily because they all have completely filled valence shells. In a very simplified explanation:
1. Complete Valence Shells: All the noble gases have their outermost shells completely filled with electrons. This configuration is considered very stable and requires no additional electrons to reach stability, unlike other elements that may gain, lose, or share electrons to achieve a full valence shell.
2. Highly Stable: Due to this completely filled valence shell, the noble gases do not readily react with other elements to form compounds. Their stability comes from the fact that they do not need to bond with other elements to achieve a more stable state.
3. Examples: For instance, Helium (He) has two electrons filling its first shell, Neon (Ne) has eight electrons in its second shell, and similarly, other noble gases also have fully occupied outer shells.
This property is why the noble gases are termed "inert," which means they are largely non-reactive.
Vraag 28 Verslag
The term that is not associated with petroleum industry is ?
Antwoorddetails
Cracking, saponification and polymerization are all terminologies associated with the petroleum industry but fermentation is associated with the brewery industry.
Cracking is a chemical process that breaks down heavy hydrocarbon molecules into lighter, more useful ones.
Saponification is a chemical reaction that converts fats and oils into soap. It's not directly involved in petroleum, but it can be used to analyze petroleum products.
Polymerization is a process in the petroleum industry that converts light olefin gases into higher molecular weight hydrocarbons.
Fermentation is the process in which a substance breaks down into a simpler substance. Microorganisms like yeast and bacteria usually play a role in the fermentation process, creating beer, wine, bread,yogurt and other foods.
Vraag 29 Verslag
The percentage of hydrogen in the sixth member of the class of the aliphatic alkanes is [H =1, C =12 ]
Antwoorddetails
To determine the percentage of hydrogen in the sixth member of aliphatic alkanes, we first need to understand the general formula for alkanes. Aliphatic alkanes are a class of hydrocarbons with the general formula CnH2n+2, where 'n' is the number of carbon atoms.
The sixth member of this series will have n = 6. Therefore, the molecular formula for the sixth member is C6H14.
To find the percentage of hydrogen, we first calculate the molar mass of C6H14:
Total molar mass of C6H14 = 72 + 14 = 86
Next, we calculate the percentage of hydrogen:
Percentage of hydrogen = (Molar mass of hydrogen atoms / Total molar mass) × 100
Percentage of hydrogen = (14 / 86) × 100 = 16.28%
Therefore, the percentage of hydrogen in the sixth member of the aliphatic alkanes is 16.28%.
Vraag 30 Verslag
An organic compound with general formula RCOR' is an
Antwoorddetails
The general formula RCOR' represents a class of organic compounds known as ketones. In this formula, R and R' are alkyl groups, which are chains of carbon and hydrogen atoms. The CO in the middle is a carbonyl group, which consists of a carbon atom double-bonded to an oxygen atom. Therefore, with the presence of two alkyl groups on either side of the carbonyl group, the compound is categorized as a ketone, scientifically referred to as an alkanone.
Here is a simple breakdown of the terms:
Hence, by looking at the general formula RCOR', the organic compound in question is undoubtedly an alkanone.
Vraag 31 Verslag
After breathing in a test tube that contains acidified K2 Cr2 O7 , a man noticed the change in the colour of K2 Cr2 O7 from orange to green. This suggests the presence of
Antwoorddetails
When the acidified potassium dichromate (\(K_2Cr_2O_7\)) solution changes from orange to green, it indicates a chemical reaction is occurring where the chromium in the dichromate ion is being reduced. In this context, acidified \(K_2Cr_2O_7\) is commonly used as an oxidizing agent.
The change in color from orange (dichromate ion) to green (chromium ion) suggests that the dichromate ion is being reduced, and something in the person's breath is being oxidized.
The substances that can be oxidized in the breath are organic compounds, typically those containing functional groups with oxidizable hydrogen atoms or structures.
Therefore, when the color of acidified potassium dichromate changes from orange to green, it suggests the presence of an alkanol.
Vraag 32 Verslag
25.0g of potassium chloride were dissolved in 80g of distilled water at 300 C. Calculate the solubility of the solute in mol dm3 . [K =39, Cl = 35.5]
Antwoorddetails
To calculate the solubility of potassium chloride (KCl) in mol dm3, we need to follow these steps:
Molar mass of KCl = 39 + 35.5 = 74.5 g/mol
Moles of KCl = Mass of KCl / Molar mass of KCl = 25.0 g / 74.5 g/mol = 0.3356 mol
Convert ml to liters: 80 ml = 0.080 L
Concentration = Moles of solute / Volume of solvent in liters = 0.3356 mol / 0.080 L = 4.195 mol/dm3
The solubility of potassium chloride at 30°C in mol/dm3 is therefore approximately 4.2 mol/dm3.
Vraag 33 Verslag
The main constituent of water-glass is
Antwoorddetails
The main constituent of water-glass is sodium trioxosilicate(IV). Water-glass, also known as liquid glass, is common terminology for a mixture of sodium silicate and water. The primary chemical component in water-glass is sodium silicate, which includes sodium ions (Na+) bonded with silicate ions (SiO44-).
Essentially, when sodium silicate is dissolved in water, it results in a viscous liquid that can be utilized in various applications such as in cements, passive fire protection, textile and lumber processing, and as a sealant. Sodium trioxosilicate(IV) forms a significant part of this mixture as it reacts with other compounds to create a hardened, glass-like structure when it dries. Therefore, when water-glass is mentioned, it is mostly referring to solutions that have sodium trioxosilicate(IV) as their principal compound.
Vraag 34 Verslag
Hydrogen chloride gas and ammonia can be used to demonstrate the fountain experiment because they are
Antwoorddetails
In the fountain experiment, hydrogen chloride gas (HCl) and ammonia (NH₃) are used to demonstrate the creation of a visible 'fountain' due to their high solubility in water. Here's a simple explanation:
When hydrogen chloride gas and ammonia gas come into contact with water, they dissolve very quickly and react vigorously. This is because both gases are very soluble in water. As they dissolve, a vacuum-like pressure is created inside the container where the gases are held, pulling water up into it, creating the 'fountain' effect.
Moreover, when HCl and NH₃ gases react with each other, they form a white, solid product known as ammonium chloride (NH₄Cl), which is a demonstration of how both gases can effectively dissolve and react with not just water, but also with each other.
Thus, the ability of these gases to create a fountain effect is primarily because they are very soluble in water, which allows them to dissolve rapidly and create the pressure differential necessary for the water to be pulled into the container dynamically.
Vraag 35 Verslag
The shape of ammonia molecule is
Antwoorddetails
The shape of the ammonia molecule (NH3) is trigonal pyramidal. To understand why, let's explore the electron and molecular geometry using a simple explanation:
Ammonia consists of one nitrogen (N) atom bonded to three hydrogen (H) atoms. The nitrogen atom has five valence electrons requiring three more electrons to complete its octet. These are acquired by forming covalent bonds with three hydrogen atoms. In addition to the three bonding pairs, there is one lone pair of electrons on the nitrogen atom.
According to the VSEPR (Valence Shell Electron Pair Repulsion) theory, electron pairs, including bonding pairs and lone pairs, repel each other and arrange themselves as far apart as possible to minimize repulsion. In ammonia:
The presence of the lone pair on nitrogen creates a slight distortion, causing the molecule's shape to be trigonal pyramidal rather than perfectly tetrahedral. The lone pair occupies more space and pushes the hydrogen atoms slightly closer together. This results in a pyramidal shape, with nitrogen at the apex, and the three hydrogen atoms forming the base of the pyramid.
The trigonal pyramidal shape of ammonia is a result of this molecular geometry, not to be confused with any of the other options like V-shaped, tetrahedral, or co-planar.
Vraag 36 Verslag
The volume occupied by 1 mole of an ideal gas at a temperature of 130 C and a pressure of 1.58 atm is
[ R = 0.082 atm dm3 K−1 mol−1 ]
Antwoorddetails
According to the Ideal gas equation, PV = nRT
Given: P = 1.58 atm, V = ?, n = 1 mole, R = 0.082, T= 13 + 273K = 286K
Substituting all the given parameters,
V = nRTP
V = 1×0.082×2861.58
V = 14.84 dm3
Vraag 37 Verslag
A radioactive element of mass 1g has half-life of 2 minutes, what fraction of the substance would have disintegrated after 10 minutes?
Antwoorddetails
Originalmass2n
= Residual mass
Where n = number of activity = exposuretimehalflife
Given:
Original mass = 1g, exposure time = 10 minutes , half life = 2 minutes, Residual mass = ?
Substituting all the given parameters appropriately, we have
n = 102
n = 5
Originalmass2n = Residual mass
125
5 = Residual mass
132 = Residual mass
Residual mass = 132
or 0.03125g
Vraag 38 Verslag
During the fractional distillation of crude oil, the fraction that distills at 200 - 2500 C is
Antwoorddetails
The petroleum fractions that distill at 200–250°C are naphtha and kerosene,
Vraag 39 Verslag
How much of 5g of radioactive element whose half life is 50days remains after 200days?
Antwoorddetails
To determine how much of a radioactive element remains after a certain period, we use the concept of half-life. The half-life of a substance is the time it takes for half of the initial amount of a radioactive element to decay. In this example, the half-life is given as 50 days.
We want to know how much of a 5g sample remains after 200 days. First, calculate how many half-lives occur in 200 days:
Number of half-lives = Total time elapsed / Half-life
= 200 days / 50 days
= 4 half-lives
Next, we calculate the remaining amount after each half-life period:
After 200 days, 0.31g of the radioactive element remains.
Vraag 40 Verslag
H2 S(g) + Cl2 (g) → 2HCl(g) + S(s)
What is the change in oxidation state of sulphur from reactant to product?
Antwoorddetails
To determine the change in oxidation state of sulfur, follow these steps:
In the given reaction:
H2S(g) + Cl2(g) → 2HCl(g) + S(s)
We observe:
Thus, the change in oxidation state of sulfur when moving from the reactants to the products is from **-2** to **0**. This indicates that sulfur is being oxidized.
The correct answer is that the oxidation state of sulfur changes from **-2 to 0**.
Wilt u doorgaan met deze actie?