Laden....
Druk & Houd Vast om te Verslepen |
|||
Klik hier om te sluiten |
Vraag 1 Verslag
The ions responsible for permanent hardness in water are sulphates of
Antwoorddetails
Permanent hardness in water is mainly caused by the presence of certain metal ions, specifically the **sulfates (SO₄²⁻)** and **chlorides (Cl⁻)** of calcium (Ca) and magnesium (Mg). These compounds do not precipitate out when the water is boiled, which means they remain dissolved and continue to contribute to the hardness of the water.
Among the options you provided, the ions responsible for permanent hardness in water are the **sulfates of calcium (Ca²⁺)** and **magnesium (Mg²⁺)**. The presence of calcium sulfate (CaSO₄) and magnesium sulfate (MgSO₄) in water keeps it hard.
When compared to temporary hardness, which can be removed by boiling the water to precipitate bicarbonates, **permanent hardness cannot be removed by boiling**. Instead, methods such as ion exchange or the use of water softeners are required to remove these ions from the water.
In summary, the ions causing permanent hardness in water are the **sulfates of calcium (Ca²⁺)** and **magnesium (Mg²⁺)**. These ions remain dissolved and continue to make the water hard, despite boiling.
Vraag 2 Verslag
Aqueous solution of sodium hydroxide can be used to test for the presence of : I. Ca2+ , II. Zn2+ , III. Cu2+
Antwoorddetails
Aqueous solution of sodium hydroxide (NaOH) is a versatile reagent in chemistry, often used to test for the presence of metal ions. When sodium hydroxide is added to solutions containing certain metal ions, it forms precipitates that are characteristic of those ions. Here's how it interacts with each of the mentioned ions:
Calcium ions (Ca2+): When NaOH is added to a solution containing calcium ions, a white precipitate of calcium hydroxide (Ca(OH)2) can form. However, the precipitate is only slightly soluble in water, and this reaction is not the most definitive test for calcium ions.
Zinc ions (Zn2+): When sodium hydroxide is added to a solution containing zinc ions, a white gelatinous precipitate of zinc hydroxide (Zn(OH)2) forms. This precipitate is soluble in excess NaOH, leading to a clear, colorless solution. This reaction is used to test for zinc ions.
Copper ions (Cu2+): When NaOH is added to a solution containing copper ions, a pale blue precipitate of copper(II) hydroxide (Cu(OH)2) forms. This precipitate is insoluble even in excess NaOH, and the formation of this blue precipitate is a common test for copper ions.
Therefore, an aqueous solution of sodium hydroxide can be used to test for the presence of all three ions: calcium (Ca2+), zinc (Zn2+), and copper (Cu2+). The reaction and precipitate formation with each ion serve as indicators of their presence. Thus, the correct answer is:
I, II and III.
Vraag 3 Verslag
In the conductance of aqueous CuSO4 solution, the current carriers are the
Antwoorddetails
In the conductance of aqueous CuSO4 solution, the current carriers are the hydrated ions.
Here's why:
The other options can be understood as follows:
The correct answer is therefore hydrated ions because they enable the conduction of electricity through the aqueous solution.
Vraag 4 Verslag
The compound of Copper used as a fungicide is
Antwoorddetails
The compound of copper that is commonly used as a fungicide is **Copper(II) sulfate**, which is represented by the chemical formula **CuSO4**.
Let's break this down for better understanding:
The other compounds listed do not serve as common fungicides:
Therefore, the correct and widely used copper compound as a fungicide is Copper(II) sulfate (CuSO4).
Vraag 5 Verslag
During the fractional distillation of crude oil, the fraction that distills at 200 - 2500 C is
Antwoorddetails
The petroleum fractions that distill at 200–250°C are naphtha and kerosene,
Vraag 6 Verslag
When n = 3, the quantum number of an element is
Antwoorddetails
Quantum numbers are a set of numbers that describe the position and energy of an electron in an atom.
When the quantum number is equal to 3, the possible values for the azimuthal quantum number are 0, 1, and 2:
The three possible sub-shells when n=3 are 3s, 3p, and 3d.
Vraag 7 Verslag
Scandium is not regarded as a transition metal because its ion has
Antwoorddetails
Scandium is not regarded as a transition metal because its ion has no electron in the d-orbital.
To understand this, let's first define a transition metal. A transition metal is defined as an element that has an incomplete d-subshell in either its elemental form or in any of its common oxidation states.
When Scandium (Sc) loses electrons to form its most common ion (Sc3+), it loses three electrons. These electrons are removed from the 4s and 3d orbitals. The electron configuration for Scandium is [Ar] 3d1 4s2. Upon losing three electrons to form Sc3+, the resulting electron configuration is [Ar], which means there are:
As a result, there are no electrons in the d-orbital of the Scandium ion, which does not meet the criteria for a transition metal.
Vraag 8 Verslag
Cx Hy O + 5O2 → 4CO2 + 4H2 O
Cx Hy O in the equation is
Antwoorddetails
Cx Hy O + 5O2 → 4CO2 + 4H2 O
On balancing the equation, we should have
X = 4 , y = 8 and O = 2 ⇒ C4 H8 O2
Since 2 is a common factor to the three atoms, we can divide through by 2, considering the fact that that formula is not in the option.
We finally have C2 H4 O
Vraag 9 Verslag
An example of a physical change is
Antwoorddetails
An example of a physical change is the boiling of water. Let me explain why this is considered a physical change:
A physical change is a change where the substances involved do not change their chemical composition, meaning they remain the same substance, just in a different form or appearance. In the case of boiling water, when water is heated to its boiling point, it changes from a liquid to a gas (steam), but it is still comprised of water molecules (H2O). The change is reversible, so the gas can condense back into liquid water without any new substance being formed.
On the other hand:
Thus, boiling water is an excellent example of a physical change as it involves only the change in the state of matter without altering the substance's identity.
Vraag 10 Verslag
The constituents of Alnico are Aluminium, Nickel and
Antwoorddetails
Alnico is a type of alloy that is known for its strong magnetic properties. The name "Alnico" comes from the elements it is primarily composed of: Aluminum (Al), Nickel (Ni), and Cobalt (Co). These elements are combined to form an alloy that retains its magnetism well and can operate at high temperatures, making it ideal for applications like electric motors, sensors, and various electronic devices.
While there are different variations of Alnico, the presence of Cobalt (Co) is essential for enhancing the magnetic properties of the alloy. The other elements listed, such as Magnesium (Mg), Manganese (Mn), and Copper (Cu), are not typical core constituents of Alnico. Although trace amounts of other elements like copper may sometimes be included in specific formulations, the primary and most significant component responsible for Alnico's powerful magnetic characteristics is Cobalt (Co).
Vraag 11 Verslag
A factor that does not affect the rate of a chemical reaction is
Antwoorddetails
In evaluating the factors that affect the rate of a chemical reaction, we can look at each of the possible influences: surface area, temperature, volume, and catalyst.
Surface Area: When you increase the surface area of reactants, it allows more particles to collide with each other per unit of time, which in turn increases the rate of reaction. Imagine smaller particles like powders reacting faster than larger chunks because they have a greater surface exposed to the other reactants.
Temperature: Increasing the temperature usually increases the rate of reaction. Higher temperatures cause particles to move faster, increasing the energy of collisions, and therefore increasing the chance of successful reactions.
Catalyst: A catalyst is a substance that increases the rate of a chemical reaction without being consumed by it. It lowers the activation energy needed for the reaction to occur, thus allowing it to proceed faster.
Volume: The volume of the container or the amount of space in which a reaction occurs generally does not directly affect the rate of the reaction. While changing the volume can alter pressure or concentration in gaseous reactions, which in turn affects the rate, the volume itself is not a direct factor affecting reaction rate.
Therefore, the factor that does not directly affect the rate of a chemical reaction is volume. It indirectly affects reaction rates by altering concentration or pressure in certain reaction conditions, but it is not a direct influencing factor on its own.
Vraag 12 Verslag
Heat of solution involves two steps that is accompanied by heat change. The energies involved in this steps are
Antwoorddetails
The heat of solution refers to the overall energy change that occurs when a solute dissolves in a solvent. This process involves breaking and making of intermolecular forces, and it can be broken down into two main steps that are each accompanied by heat change. The energies involved in these steps are:
Lattice energy: This is the energy required to break the bonds between the ions in the solid crystal lattice of the solute. Breaking these bonds requires energy, and this step is usually endothermic, meaning it absorbs heat from the surroundings. The more energy needed to break the lattice, the higher the lattice energy.
Hydration energy: Once the lattice is broken, the ions are surrounded by solvent molecules, typically water, in a process known as hydration. The energy released when the solvent molecules interact with and stabilize the ions is called the hydration energy. This step is usually exothermic, meaning it releases heat into the surroundings.
In conclusion, the two energies involved in the heat of solution are lattice energy and hydration energy. The balance between these two energies determines whether the overall process of dissolving a solute in a solvent is endothermic or exothermic.
Vraag 13 Verslag
In the extraction of Aluminium, the silica impurity is removed by
Antwoorddetails
Aluminum is extracted from bauxite by electrolysis. The extraction proceeds in two stages;
1. Purification of the Bauxite: The impure bauxite is heated with sodium hydroxide solution to form soluble sodium tetrahydroxy aluminate (iii). The impurities in the ore which are iron (iii) oxide and trioxosilicate (iv) compounds are not soluble in the alkali. They are therefore filtered off as a sludge.
Aluminum hydroxide crystals is then added to filtrate, NaAl(OH)4 solution to induce the precipitation of Aluminum hydroxide.
2. The electrolysis of the pure alumina
Vraag 14 Verslag
If a salt weighs 2g and upon exposure to the atmosphere weighs 1.5g, this is as a result of
Antwoorddetails
The observation that a salt initially weighs 2g, but reduces to 1.5g after exposure to the atmosphere is primarily due to the process called efflorescence.
Efflorescence occurs when a salt loses water molecules from its crystal structure when exposed to air, which is why the weight of the salt decreases over time. This loss of water is because some salts contain water of crystallization, and when such salts are exposed to the atmosphere, they can release this water, leading to a reduction in weight.
In this specific case, the salt has lost 0.5g of water, leading to the weight change from 2g to 1.5g. This process is different from hygroscopy, which involves absorbing moisture from the atmosphere, or deliquescence, where a substance absorbs moisture and eventually dissolves in it. It's also not related to effervescence, which is the escape of gas from an aqueous solution.
Vraag 15 Verslag
CuOs + H2 (g ) ⇌ Cus + H2 O(g )
In the equation above, the effect of increased pressure on the equilibrium position is that
Antwoorddetails
To understand the effect of increased pressure on the equilibrium position of the given reaction:
CuO(s) + H2(g) ⇌ Cu(s) + H2O(g)
We need to consider Le Chatelier's Principle. According to this principle, if a system at equilibrium is subjected to a change in pressure, temperature, or concentration, the system will adjust itself to counteract the effect of the change and re-establish equilibrium.
For the reaction in question, let's consider the number of gas molecules on each side of the equation:
Since both sides of the equation have the same number of gas molecules, an increase in pressure will not favor a shift to either the left or the right because the number of moles of gas on both sides of the equilibrium is the same.
Therefore, the effect of increased pressure on the equilibrium is that there is no effect. The position of the equilibrium remains unchanged, and pressure changes do not influence the production of more H2(g) or H2O(g) in this specific reaction.
Vraag 16 Verslag
When Sulphur(IV)oxide is passed into solution of acidified tetraoxomanganate(VII), the colour changes from
Antwoorddetails
When Sulphur(IV) oxide (SO2) is passed into a solution of acidified tetraoxomanganate (VII) (KMnO4), it acts as a reducing agent. This reaction involves the reduction of potassium permanganate (KMnO4), which is characterized by a distinctive color change.
The tetraoxomanganate (VII) ion (MnO4-) is purple in color. During the reaction, SO2 gets oxidized while the MnO4- ion is reduced to Mn2+, which is almost colorless or pale pink, depending on the concentration.
Thus, the color of the solution changes from purple to almost colorless as the reaction progresses.
Vraag 17 Verslag
A typical chemical reaction will be spontaneous if
Antwoorddetails
In thermodynamics, a chemical reaction is considered spontaneous when it occurs naturally under a given set of conditions without needing to be driven by an external force. The spontaneity of a reaction is best determined by the Gibbs Free Energy change, denoted as ΔG.
The criteria for spontaneity is as follows:
Now, let's relate this to the given options:
Thus, a chemical reaction is spontaneous when the Gibbs Free Energy change (ΔG) is negative.
Vraag 18 Verslag
H2 S(g) + Cl2 (g) → 2HCl(g) + S(s)
What is the change in oxidation state of sulphur from reactant to product?
Antwoorddetails
To determine the change in oxidation state of sulfur, follow these steps:
In the given reaction:
H2S(g) + Cl2(g) → 2HCl(g) + S(s)
We observe:
Thus, the change in oxidation state of sulfur when moving from the reactants to the products is from **-2** to **0**. This indicates that sulfur is being oxidized.
The correct answer is that the oxidation state of sulfur changes from **-2 to 0**.
Vraag 19 Verslag
An organic compound with general formula RCOR' is an
Antwoorddetails
The general formula RCOR' represents a class of organic compounds known as ketones. In this formula, R and R' are alkyl groups, which are chains of carbon and hydrogen atoms. The CO in the middle is a carbonyl group, which consists of a carbon atom double-bonded to an oxygen atom. Therefore, with the presence of two alkyl groups on either side of the carbonyl group, the compound is categorized as a ketone, scientifically referred to as an alkanone.
Here is a simple breakdown of the terms:
Hence, by looking at the general formula RCOR', the organic compound in question is undoubtedly an alkanone.
Vraag 20 Verslag
The shape of ammonia molecule is
Antwoorddetails
The shape of the ammonia molecule (NH3) is trigonal pyramidal. To understand why, let's explore the electron and molecular geometry using a simple explanation:
Ammonia consists of one nitrogen (N) atom bonded to three hydrogen (H) atoms. The nitrogen atom has five valence electrons requiring three more electrons to complete its octet. These are acquired by forming covalent bonds with three hydrogen atoms. In addition to the three bonding pairs, there is one lone pair of electrons on the nitrogen atom.
According to the VSEPR (Valence Shell Electron Pair Repulsion) theory, electron pairs, including bonding pairs and lone pairs, repel each other and arrange themselves as far apart as possible to minimize repulsion. In ammonia:
The presence of the lone pair on nitrogen creates a slight distortion, causing the molecule's shape to be trigonal pyramidal rather than perfectly tetrahedral. The lone pair occupies more space and pushes the hydrogen atoms slightly closer together. This results in a pyramidal shape, with nitrogen at the apex, and the three hydrogen atoms forming the base of the pyramid.
The trigonal pyramidal shape of ammonia is a result of this molecular geometry, not to be confused with any of the other options like V-shaped, tetrahedral, or co-planar.
Vraag 21 Verslag
The reaction between alkanoic acids and alkanols in the presence of an acid catalyst is known as
Antwoorddetails
The reaction between alkanoic acids and alkanols in the presence of an acid catalyst is known as esterification.
An alkanoic acid, also known as a carboxylic acid, is a type of organic acid that contains a carboxyl group (-COOH). An alkanol, commonly referred to as an alcohol, contains a hydroxyl group (-OH).
When an alkanoic acid reacts with an alkanol in the presence of an acid catalyst (commonly sulfuric acid), they combine to form an ester and water. This particular reaction is termed esterification. The acid catalyst speeds up the reaction by donating protons, which helps in breaking and forming new bonds.
Here's a simplified view of the reaction:
1. Alkanoic Acid (R-COOH) + Alkanol (R'-OH) -> Ester (R-COOR') + Water (H2O)
The key characteristics of esterification are:
Therefore, in summary, the process described is esterification.
Vraag 22 Verslag
Alkanoates are naturally found in
Antwoorddetails
Alkanoates, also known as fatty acid esters, are primarily found in lipids. Lipids are a broad group of naturally occurring molecules that include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), and others. One of the main components of lipids is fatty acids and their derivatives, such as alkanoates.
To be more specific, alkanoates can be found in the form of triglycerides, which are the main constituents of body fat in humans and animals, as well as vegetable fat. Triglycerides are composed of glycerol bound to three fatty acids, and these fatty acids are usually present in the form of alkanoates.
Unlike proteins and rubber, which are made up of amino acids and polymers of isoprene respectively, lipids are the primary class of biomolecules where these alkanoate compounds can be found in significant amounts.
Vraag 23 Verslag
The element which can combine with oxygen to form an acid anhydride of the form XO2 is
Antwoorddetails
An Acid anhydride can be defined as a non-metal oxide which forms an acidic solution when reacted with water.
Sulphur is the element that can combine with oxygen to form an acid anhydride of the form XO2 .
An acid oxide is a compound that forms an acid when it reacts with water. Non-metals in groups 4–7 form acidic oxides.
Vraag 24 Verslag
Nitrogen obtained from air is not absolutely pure because it contains the following except
Antwoorddetails
Nitrogen obtained from air is not absolutely pure because it contains other gases, including:
Vraag 25 Verslag
How many isomers has the organic compound represented by the formula C3 H8 O ?
Antwoorddetails
The molecular formula C3H8O represents organic compounds that contain 3 carbon atoms, 8 hydrogen atoms, and 1 oxygen atom. Let's elucidate the possible isomers, which are molecules with the same molecular formula but different structural arrangements.
1. Alcohols: One class of compounds that can form isomers for this formula are alcohols, which include a functional group -OH.
a. Propan-1-ol: This is a straight-chain alcohol where the -OH group is on the first carbon. The structure is as follows:
CH3-CH2-CH2-OH
b. Propan-2-ol: This is another alcohol where the -OH group is on the second carbon, giving it a different structure and properties:
CH3-CH(OH)-CH3
2. Ethers: This is another class of possible isomers, where the oxygen atom is bonded to two alkyl groups.
c. Methoxyethane: Also known as ethyl methyl ether, it has a structure where the oxygen is in a bridge position between a methyl group and an ethyl group:
CH3-O-CH2-CH3
These are the possible structural isomers for this molecular formula. Therefore, the compound C3H8O has three isomers overall:
Thus, the answer is three distinct isomers.
Vraag 26 Verslag
The electronic configuration of an atom of Nitrogen is 1s2 2s2 2p1x 2p1y 2p1z because the atom is
Antwoorddetails
The electronic configuration of nitrogen is given as: 1s2 2s2 2px1 2py1 2pz1.
This configuration suggests that nitrogen has 7 electrons, as follows:
This is the **ground state** electron configuration of nitrogen, meaning that the atoms have electrons in the **lowest possible energy levels**. It demonstrates nitrogen's **stable configuration**, where it has half-filled p orbitals, each with a single electron. This configuration obeys Hund's Rule, which states that every orbital in a subshell gets one electron before any one orbital gets two (due to electron repulsion). It also obeys the Aufbau principle which suggests electrons fill orbitals starting from the lowest energy level.
Therefore, this configuration indicates that the atom is simply obeying rules governing electron configuration. The electrons are in their lowest energy orbitals, consistent with the principles that direct electron arrangement in an atom, ensuring stability without being excited or unstable. There are no **energy changes** being depicted nor is the atom in an **excited state**—it is showing the normal ground state.
Vraag 27 Verslag
The term strong and weak acids is used to indicate the
Antwoorddetails
The terms strong and weak acids are used to indicate the extent of ionization of an acid. This means how completely an acid dissociates into its ions in water.
Strong acids completely dissociate in water. This means that nearly all the acid molecules break down into positive hydrogen ions (H+) and their respective anions. Examples include hydrochloric acid (HCl), sulfuric acid (H2SO4), and nitric acid (HNO3).
Weak acids, on the other hand, only partially dissociate in water. This means that only a small fraction of the acid molecules break down into ions. Most of the acid remains in its molecular form. An example of a weak acid is acetic acid (CH3COOH), which is found in vinegar.
Therefore, the strength of an acid in terms of its classification as strong or weak is about how fully it dissociates into ions in an aqueous solution, not about the number of H+ ions or the strength of its action on substances.
Vraag 28 Verslag
The chemical formula for potassiumhexacyanoferrate(II) is
Antwoorddetails
The chemical formula for potassiumhexacyanoferrate(II) is K4Fe(CN)6.
Let's break down the name to understand why:
1. Potassium (K): The compound includes potassium ions. In this case, four potassium ions are present, indicated by the subscript 4 in K4.
2. Hexacyano: The prefix "hexa" means six, which signifies there are six cyanide ions (CN-) in the complex. This is represented as (CN)6.
3. Ferrate (II): The word "ferrate" suggests the presence of iron (Fe). The Roman numeral (II) indicates that the iron is in the +2 oxidation state.
Overall, the complex ion is [Fe(CN)6] with a charge of 4-, so to balance the charge, four potassium ions (each with a charge of +1) are needed, resulting in the formula K4Fe(CN)6.
Vraag 29 Verslag
The volume in cm3 of a 0.12 moldm−3 HCl required to completely neutralize a 20cm3 of 0.20 moldm−3 of NaOH is
Antwoorddetails
To find the volume of HCl that is required to completely neutralize the NaOH solution, we need to use the concept of a neutralization reaction. A neutralization reaction occurs when an acid and a base react to form water and a salt, thus neutralizing each other.
In this particular reaction, the balanced chemical equation is:
HCl + NaOH → NaCl + H2O
Here, the equation tells us that one mole of HCl reacts with one mole of NaOH. Therefore, the molar ratio of HCl to NaOH is 1:1.
First, let's determine the number of moles of NaOH present in 20 cm3 solution:
Number of moles of NaOH = Concentration (mol/dm3) × Volume (dm3)
= 0.20 mol/dm3 × 20 cm3 × (1 dm3 / 1000 cm3)
= 0.20 × 0.020
= 0.004 moles
Since the reaction is in a 1:1 ratio, the number of moles of HCl required is also 0.004 moles.
Now, let's determine the volume of HCl solution required:
Volume of HCl (dm3) = Number of moles / Concentration
= 0.004 moles / 0.12 mol/dm3
= 0.03333 dm3
Convert this volume from dm3 to cm3:
0.03333 dm3 × 1000 cm3 / dm3 = 33.33 cm3
Therefore, the volume of HCl required is 33.33 cm3.
Vraag 30 Verslag
The hybridization scheme in ethyne is
Antwoorddetails
Ethyne, also known as acetylene, is a simple alkyne with the chemical formula C2H2. In ethyne, each carbon atom is bonded to two other atoms: one hydrogen atom and the other carbon atom. The molecular structure of ethyne is linear, with a triple bond between the two carbon atoms.
To determine the hybridization scheme in ethyne, we need to examine the arrangement of the electron pairs around each carbon atom. In ethyne, each carbon atom is forming two sigma (σ) bonds and two pi (π) bonds. Let's explain:
When we consider the hybridization of the carbon atoms, we focus on the formation of sigma bonds and lone pairs. In ethyne, each carbon atom utilizes two orbitals to form sigma bonds: one with the hydrogen atom and one with the other carbon atom. This implies that each carbon atom in ethyne must use two hybrid orbitals.
The two hybrid orbitals formed by each carbon atom in ethyne are a result of mixing one s orbital with one p orbital. This hybridization is referred to as sp hybridization, characterized by a linear electron geometry. The remaining two unhybridized p orbitals on each carbon atom are responsible for forming the two pi bonds in the triple bond.
In conclusion, the hybridization scheme in ethyne is sp.
Vraag 31 Verslag
An example of a physical change is
Antwoorddetails
A physical change involves a change in the physical properties of a substance, without a change in its chemical composition. This means that the substance remains the same at the molecular level, despite how it might appear differently.
An example of a physical change from the given options is the liquefaction of liquids. In this process, a substance transitions from a solid or gas to a liquid state. This change is purely physical because the molecular structure of the substance does not change; only its state or form does. Importantly, such a change is usually reversible, meaning the substance can return to its original state. For instance, water can change into ice (frozen) or steam (vapor), and can still revert back to liquid water.
On the other hand, the other options involve chemical changes, where the original substances undergo chemical reactions to form new substances with different properties, thus altering the molecular structure depending on the option.
Vraag 32 Verslag
The highest isotope of hydrogen is
Antwoorddetails
Hydrogen has three naturally occurring isotopes, and each of them contains the same number of protons but different numbers of neutrons. Let's briefly differentiate them:
The highest isotope of hydrogen is tritium because it has the most neutrons and, therefore, the greatest atomic mass compared to the other isotopes. It is also noteworthy that tritium is radioactive, while the other hydrogen isotopes are stable.
Vraag 33 Verslag
When the subsidiary quantum numbers (l) equals 1, the shape of the orbital is
Antwoorddetails
The subsidiary quantum number, often referred to as the azimuthal quantum number or angular momentum quantum number, is denoted by l. This quantum number defines the shape of the atomic orbital. The value of l determines the type of orbital as follows:
For l = 1, the atomic orbital is a p orbital, which is characterized by its dumb-bell shape. This means that the electron density is concentrated in two lobes on opposite sides of the nucleus, resembling a dumb-bell.
Vraag 34 Verslag
The IUPAC nomenclature of the complex K4 Fe(CN)6 is
Antwoorddetails
The compound in question is K4[Fe(CN)6]. To name this complex using IUPAC nomenclature, let's break it down into parts:
Next, consider the oxidation state of Fe:
Finally, we consider the oxidation state of the iron. Since calculations show that it is +2, the complex ion is named based on its oxidation state.
Hence, the IUPAC name of this compound is potassium hexacyanoferrate(II).
Vraag 35 Verslag
A major effect of oil pollution in coastal water is
Antwoorddetails
One of the major effects of oil pollution in coastal water is the destruction of aquatic life.
When oil spills into a water body, it forms a thin layer called a sheen on the surface of the water. This oil layer blocks sunlight from reaching aquatic plants and phytoplankton, inhibiting their ability to perform photosynthesis. As a result, these plants and microorganisms suffer, impacting the entire food chain.
Moreover, oil can coat the feathers of birds and the fur of marine mammals, which affects their insulation and buoyancy, leading to hypothermia, drowning, or inability to fly. Additionally, the toxic components in oil are harmful if ingested, causing internal damage to fish and other marine organisms. These combined effects can lead to significant mortality in aquatic ecosystems, threatening biodiversity and the natural balance of coastal waters.
Therefore, oil pollution can severely affect the health and survival of aquatic life, creating disruptions that can persist for many years.
Vraag 36 Verslag
The product formed when ethyne is passed through a hot tube containing finely divided iron is
Antwoorddetails
When **ethyne** (also known as acetylene) is passed through a hot tube containing finely divided iron, a process called decomposition occurs. The heat causes the ethyne molecules to break down, and under these conditions, they **re-combine** to form structures that result in more complex molecules.
The key transformation involves the conversion of these ethyne molecules into **aromatic compounds**. Aromatic compounds, such as **benzene**, have a distinct ring structure and are characterized by **stability** due to resonance (a phenomenon where electrons are delocalized over a certain structure, providing extra stability).
Thus, when ethyne is passed through a hot iron tube, it undergoes trimerization to form benzene, an **aromatic** compound. Therefore, the product formed is **aromatic**.
Vraag 37 Verslag
COMPOUND | S | T | U | V | W |
FORMULA | ROR' | RCOOH' | RCOR' | ROH' | RCOOR' |
From the table above, which of these two compounds can form functional group isomers?
Antwoorddetails
ROH' and ROR' can form functional group isomers because they are the functional groups of alcohols and ethers, respectively.
Ethers have a pair of alkyl or aromatic groups attached to a linking oxygen atom. ROH is the functional group of alcohols, which are derivatives of water with one hydrogen atom replaced by an alkyl group.
Alcohols (ROH) and ethers (ROR') can form functional group isomers because they have the same chemical formula but different functional groups. E.g CH3 CH2 OH and CH3 OCH3
Vraag 38 Verslag
Fog is a colloid in which
Antwoorddetails
**Fog** is a type of colloid, which is a mixture where very small particles of one substance are evenly distributed throughout another substance. In the case of fog, it consists of tiny **liquid droplets** that are dispersed in a **gas**. Specifically, these are tiny droplets of water suspended in the air. When you walk through fog, you are essentially walking through air that contains these minute water droplets.
Thus, the correct description of fog as a colloid is that it consists of **liquid particles dispersed in a gas medium**. The liquid here is water, and the gas is air.
Vraag 39 Verslag
A liquid hydrocarbon obtained from fractional distillation of coal tar that is used in the pharmaceutical industry is
Antwoorddetails
Benzene is a liquid hydrocarbon that is obtained from the fractional distillation of coal tar, and it is extensively used in the pharmaceutical industry. Let me break this down for you:
That's why benzene plays an important role in the pharmaceutical industry, making it a highly valued product obtained through the distillation of coal tar.
Vraag 40 Verslag
Determine the empirical formula of an oxide of sulphur containing 60% of oxygen
[S = 32, O = 16 ]
Antwoorddetails
To determine the empirical formula of an oxide of sulfur containing 60% of oxygen, we have to understand the concept of empirical formulas, which give the simplest whole-number ratio of atoms of each element in a compound.
Step 1: Assume 100g of the compound. In 100g of the compound:
Step 2: Convert masses to moles. Use the molar mass to find moles.
Step 3: Determine the simplest whole-number ratio.
To find the ratio, divide each mole value by the smallest number of moles calculated:
The simplest ratio of S:O is 1:3.
Thus, the empirical formula of the oxide is SO3.
Wilt u doorgaan met deze actie?