Laden....
Druk & Houd Vast om te Verslepen |
|||
Klik hier om te sluiten |
Vraag 1 Verslag
Which of the following is an essential physical property of the wires uses for making fuses ?
Antwoorddetails
The essential physical property of the wire used for making fuses is low melting point. This means that the wire should have a low temperature at which it melts and breaks, interrupting the flow of electrical current. This is important in a fuse because when there is an overload of electrical current, the wire will melt, breaking the circuit and preventing damage to the electrical system. The other options, low density, low electrical resistivity, and hypothermal conductivity, are not as important for a fuse wire. Low density is the property of a material to be light, and it doesn't necessarily affect the performance of a fuse wire. Low electrical resistivity is the property of a material to have low resistance to the flow of electrical current, and it doesn't necessarily affect the performance of a fuse wire either. Hypothermal conductivity is the property of a material to conduct heat poorly, and it also doesn't necessarily affect the performance of a fuse wire.
Vraag 2 Verslag
The process by which protons are converted into helium atoms with a tremendous release of energy is called?
Antwoorddetails
The process by which protons are converted into helium atoms with a tremendous release of energy is called "thermonuclear fusion". In this process, two light atomic nuclei combine to form a heavier nucleus, releasing a huge amount of energy in the form of light and heat. This is the same process that powers the sun and other stars. The high temperatures and pressures required for fusion to occur can only be achieved in stars or in controlled environments such as fusion reactors. Thermonuclear fusion is different from nuclear fission, which is the process of splitting a heavy nucleus into lighter nuclei with the release of energy. Thermionic emission and photoelectric emission are different processes that involve the emission of electrons from a material due to heating or exposure to light, respectively.
Vraag 3 Verslag
A positively charged rod X is brought near an uncharged metal sphere Y and is then touched by a finger with X still in place. When the finger is removed, the result is that Y has
Antwoorddetails
Vraag 4 Verslag
The linear expansivity of brass is 2 x 10?5
C?1
. If the volume of a piece of brass is 15.00cm at 0°C, what is the volume at 100°C
Antwoorddetails
The linear expansivity of brass is given as 2 x 10^-5 /°C. This means that for every 1°C increase in temperature, the brass expands by 2 x 10^-5 of its original size. To find the new volume of the brass at 100°C, we need to take into account the expansion in all three dimensions (length, width, and height). Since the expansivity given is for length only, we need to find the expansivity in all three dimensions by multiplying it by 3. The expansivity in all three dimensions is: 3 x (2 x 10^-5 /°C) = 6 x 10^-5 /°C To find the new volume, we can use the formula: Vf = Vi (1 + αΔT) where Vf is the final volume, Vi is the initial volume, α is the expansivity in all three dimensions, and ΔT is the change in temperature. Plugging in the values, we get: Vf = 15.00 cm3 (1 + (6 x 10^-5 /°C) x (100°C - 0°C)) Vf = 15.09 cm3 Therefore, the volume of the brass at 100°C is 15.09 cm3.
Vraag 5 Verslag
The photo cell works on the principle of the
Antwoorddetails
The photocell works on the principle of the emission of electrons by incident radiation. In simple terms, a photocell is a device that converts light energy into electrical energy. It does this by using a material (such as silicon) that releases electrons when it is exposed to light. These electrons can then be collected and used to produce a current, which can be used to power an electrical device. The more light that hits the photocell, the more electrons are released and the greater the electrical current.
Vraag 6 Verslag
The amount of heat needed to raise the temperature of 10kg of Copper by 1K is its
Antwoorddetails
The correct answer is "specific heat capacity." Specific heat capacity is a measure of how much heat energy is required to raise the temperature of a certain amount of a substance by 1 degree Celsius (or 1 Kelvin, which is the same size as 1 degree Celsius). In this case, we are dealing with 10kg of copper, so we need to know the specific heat capacity of copper. The specific heat capacity of copper is 0.385 J/g°C (joules per gram per degree Celsius). To calculate the amount of heat needed to raise the temperature of 10kg of copper by 1K, we need to know the total mass of copper (10kg) and the specific heat capacity of copper (0.385 J/g°C). The formula for calculating the amount of heat energy required is: Heat energy = mass x specific heat capacity x change in temperature Since we want to raise the temperature by 1K, the change in temperature is 1K. So, the amount of heat energy required to raise the temperature of 10kg of copper by 1K is: Heat energy = 10kg x 0.385 J/g°C x 1K = 3.85 kJ Therefore, it takes 3.85 kilojoules (kJ) of heat energy to raise the temperature of 10kg of copper by 1K.
Vraag 7 Verslag
An object moves in a circular path of radius 0.5m with a speed of 1ms−1 . What is its angular velocity?
Antwoorddetails
Angular velocity is a measure of how fast an object is rotating around a center point. It's usually measured in radians per second (rad/s). To calculate angular velocity, we use the formula: angular velocity = linear velocity / radius. In this case, the linear velocity is 1 m/s, and the radius is 0.5 m. So, the angular velocity would be: 1 m/s / 0.5 m = 2 rad/s Therefore, the answer is 2 rad/s or 2rads^-1
Vraag 8 Verslag
Convex mirrors are used as driving mirrors because images formed are
Antwoorddetails
Convex mirrors are used as driving mirrors because the images formed by them are "erect, virtual, and diminished." Let me explain what these terms mean: - Erect: It means that the image appears upright, just like the actual object. This is important for a driving mirror because it allows the driver to perceive the correct orientation of the vehicles behind them. - Virtual: It means that the image appears to be behind the mirror, and not in front of it. This is also important for a driving mirror because it allows the driver to see a wider field of view without having to turn their head. - Diminished: It means that the image is smaller than the actual object. This is important for a driving mirror because it allows the driver to see a larger area behind them while still fitting it within the mirror's frame. Overall, these properties make convex mirrors ideal for use as driving mirrors as they provide the driver with an accurate view of the vehicles behind them without sacrificing their field of view.
Vraag 9 Verslag
In homes, electrical appliances and lamps are connected in parallel because
Antwoorddetails
Vraag 10 Verslag
Which of the following instruments is most suitable for measuring the outside diameter of a narrow pipe in a few millimeters in diameter?
Antwoorddetails
The most suitable instrument for measuring the outside diameter of a narrow pipe in a few millimeters in diameter is a micrometer screw gauge. A micrometer screw gauge is a precision measuring instrument that can accurately measure small dimensions with high accuracy. It has a spindle that moves towards an anvil and a scale that indicates the measurement. The spindle moves in response to a small rotation of the thimble, allowing for precise and sensitive measurements. In contrast, a pair of calipers or a meter rule may not be accurate enough for measuring such small dimensions, and a tape rule may not be able to fit inside the narrow pipe. Therefore, a micrometer screw gauge is the most suitable option for measuring the outside diameter of a narrow pipe in a few millimeters in diameter.
Vraag 11 Verslag
When a known standard resistor of 2.0 is connected to the 0.0cm end of a meter bridge, the balance point is found to be at 55.0cm. What is the value of the unknown resistor?
Antwoorddetails
A meter bridge is an instrument used to measure the unknown resistance of a conductor. The meter bridge consists of a long resistance wire AB of uniform cross-sectional area and a battery of known voltage connected across its ends. A galvanometer is connected across a point C on the wire, which is called the null point or balance point.
When a known standard resistor of 2.0 ohms is connected to the 0.0cm end of the meter bridge wire, the balance point is found to be at 55.0cm. This means that the resistance of the unknown resistor is equal to the resistance of a portion of the meter bridge wire between the 0.0cm and the 55.0cm point.
To find the value of the unknown resistor, we can use the principle of the Wheatstone bridge, which states that the ratio of the resistances in the two arms of a balanced bridge is equal.
Let R be the resistance of the unknown resistor, then we have:
R/2.0 = (100 - 55.0)/55.0
Simplifying this expression, we get:
R = 2.0 x (100 - 55.0)/55.0
R = 1.64 ohms
Therefore, the value of the unknown resistor is 1.64 ohms.
Vraag 12 Verslag
The tendency of a body to remain at rest when a force is applied to it is called.
Antwoorddetails
The tendency of a body to remain at rest or to continue moving with a constant velocity (in a straight line at a constant speed) when no force is acting on it is called inertia. Inertia is a property of matter, and the amount of inertia depends on the mass of an object. Inertia can also be thought of as a resistance to changes in motion, meaning that an object at rest will tend to stay at rest, and an object in motion will tend to stay in motion unless acted upon by an external force. This property of inertia is what makes it difficult to start, stop, or change the direction of motion of an object. The force required to overcome the inertia of an object depends on the mass of the object and the magnitude of the acceleration desired. Therefore, the greater the mass of an object, the greater its inertia, and the more force required to change its motion.
Vraag 13 Verslag
The resistance of a 40W car head lamp, drawing current from a 12V battery is ____.
Antwoorddetails
The resistance of a 40W car headlamp can be calculated using Ohm's Law, which states that the current (I) flowing through a conductor between two points is directly proportional to the voltage (V) across the two points, and inversely proportional to the resistance (R) of the conductor. The equation can be written as V = IR. Since the power (P) of the headlamp is given as 40W and the voltage is 12V, we can calculate the current using the equation P = IV. Substituting I = P/V, we get I = 40/12 = 3.33A. Finally, using Ohm's Law, we can calculate the resistance as R = V/I = 12/3.33 = 3.6Ω. So, the resistance of the 40W car headlamp, drawing current from a 12V battery, is 3.6Ω.
Vraag 14 Verslag
The force between the molecules of a liquid in contact with that of a solid is?
Antwoorddetails
(ii) Adhesion : The force of attraction between unlike molecules, i.e. between the molecules of different liquids or between the molecules of a liquid and those of a solid body when they are in contact with each other, is known as the force of adhesion. This force enables two different liquids to adhere to each other or a liquid to adhere to a solid body or surface.
Vraag 15 Verslag
The electrochemical equivalent of silver is 0.0012g/C. If 36.0g of silver is to be deposited by electrolysis on a surface by passing a steady current for 5mins, the current must be?
Antwoorddetails
The electrochemical equivalent of silver is a measure of the amount of silver that is deposited on a surface per unit of charge. In this case, the electrochemical equivalent of silver is 0.0012 grams per Coulomb of charge. To deposit 36.0 grams of silver by electrolysis, we need to know the amount of charge that must be passed through the solution. The amount of charge is given by: Q = m/z where m is the mass of silver to be deposited, 0.0012 is the electrochemical equivalent of silver, and z is the charge on one mole of electrons (z = 1 for a single electron). So, the amount of charge required is: Q = 36.0 g / 0.0012 g/C = 30000 C The current, I, is given by: I = Q / t where t is the time for which the current is flowing. In this case, t = 5 minutes. So, the current required is: I = 30000 C / (5 x 60 s) = 100 A Therefore, the current must be 100 Amperes.
Vraag 16 Verslag
Which of the following is true of an electrical charge?
Antwoorddetails
The correct answer is option D: "All of the above." An electrical charge refers to the presence of an excess or deficit of electrons in an atom or molecule. In this context, positive charge means a deficit of electrons, whereas negative charge means an excess of electrons. Electric current refers to the flow of charged particles, typically electrons, through a conductor. Therefore, an electric current means the movement of electrons. In summary, all of the given options are true of an electrical charge, and they all relate to the behavior of electrons in an electrically charged system.
Vraag 17 Verslag
The time rate of loss of heat by a body is proportional to the
Antwoorddetails
The correct answer is "difference in temperature between the body and its surroundings." When a body is at a higher temperature than its surroundings, it will lose heat to the surroundings until it reaches thermal equilibrium, i.e., until the temperatures of the body and its surroundings are equal. The rate at which the body loses heat is proportional to the temperature difference between the body and its surroundings. This is known as Newton's law of cooling. The law of cooling applies to a wide range of situations, from the cooling of hot beverages to the cooling of electronic devices. It is important to understand this law because it allows us to predict how long it will take for a body to cool down to a certain temperature, and to design systems that can regulate the temperature of a body, such as heaters or refrigerators.
Vraag 18 Verslag
A solid weighs 45N and 15N respectively in air and water. Determine the relative density of the solid
Antwoorddetails
The relative density of a substance is defined as the ratio of its density to the density of a reference substance, usually water at 4 degrees Celsius. In this problem, we can use the principle of buoyancy to determine the density of the solid. When an object is submerged in a fluid, it experiences an upward force called the buoyant force, which is equal to the weight of the fluid displaced by the object. If the object is less dense than the fluid, it will float, and if it is more dense, it will sink. We are given that the solid weighs 15 N in water, which means it displaces 15 N of water. The weight of the water displaced is equal to the buoyant force on the solid, which is equal to the weight of the solid when it is completely submerged in water. Therefore, the weight of the solid when it is completely submerged in water is 15 N. We are also given that the weight of the solid in air is 45 N. The difference between the weight of the solid in air and water is equal to the weight of the water displaced, which is 30 N. This means that the volume of water displaced by the solid is 30/9.8 = 3.06 L (since the density of water is 1000 kg/m^3 or 9.8 N/L). The relative density of the solid is equal to its density divided by the density of water. We can find the density of the solid by dividing its weight in air by its volume: Density of solid = Weight of solid in air / Volume of solid Density of solid = 45 N / (45 N - 15 N) [since weight of displaced water is 15N] Density of solid = 45 N / 30 N Density of solid = 1.5 N/L Therefore, the relative density of the solid is: Relative density = Density of solid / Density of water Relative density = 1.5 N/L / 1000 N/L Relative density = 0.0015 So the answer is 0.33 (rounded to two decimal places).
Vraag 19 Verslag
If the focal length of a camera is 20cm, the distance from the film at which the lens must be set to produce a sharp image of 100cm away is
Antwoorddetails
F = 20cm
V = 100cm
U = ?
1U
+ 1V
= 1F
120
+ 1100
= 1F
5+1100
= 1F
F = 1006
= 16.7cm
= 17cm
Vraag 20 Verslag
Musical instruments playing the same note can be distinguished from one another owing to the difference in their
Antwoorddetails
Different musical instruments playing the same note can be distinguished from one another due to the difference in their "timbre" or "tone color." Timbre refers to the unique character or quality of a sound that allows us to distinguish it from other sounds even when they have the same pitch and loudness. For example, a piano and a guitar playing the same note will sound different due to the differences in their timbre. This is why we can tell the difference between different instruments and why some instruments are better suited to certain styles of music than others.
Vraag 21 Verslag
Which of the following best describes the energy changes which take place when a steam engine drives a generator which lights a lamp?
Antwoorddetails
The energy changes that take place when a steam engine drives a generator which lights a lamp can be described as: Heat energy from burning fuel is used to create steam in the boiler of the steam engine. This steam is then used to drive the turbine, which generates kinetic energy as it spins. The kinetic energy is transferred to the generator, which converts it into electrical energy (electricity). The electricity then flows through the wires to the lamp, where it is converted back into light energy, which is what we see. Therefore, the correct option would be: Heat ----> Kinetic ----> Electricity ----> Light
Vraag 22 Verslag
Which of the following diagrams represents correctly an n-p-n transistor?
i.
Antwoorddetails
Vraag 23 Verslag
Cathode rays are
Antwoorddetails
Cathode rays are streams of electrons. They were first discovered by scientists experimenting with vacuum tubes, and they observed that a glowing beam of particles traveled from the negatively charged electrode (the cathode) to the positively charged electrode (the anode). These particles were found to have a negative charge, which was later identified as electrons. Cathode rays played an important role in the development of electronics and the understanding of atomic structure.
Vraag 24 Verslag
Which of the following phenomena cannot be explained by the molecular theory of matter?
Antwoorddetails
Conduction: the flow of internal energy from a region of higher temperature to lower temperature
Convection: heat transfer due to bulk movement of molecules within fluids
Expansion: the action of becoming larger or more extensive
Vraag 25 Verslag
Calculate the effective capacitance of the circuit in the diagram given
Antwoorddetails
The three 2uf capacitors are in parallel to each other so u add them like this
2uf+2uf+2uf=6uf
So u have three capacitors in series
6uf 2uf and 3uf
They are in series so
1/C= 1/6+1/3=1/2
C=2uf
Then the same thing with the last two capay
1/2+1/2=1uf
Thanks
Vraag 26 Verslag
The product of force and time is?
Antwoorddetails
The product of force and time is known as impulse. Impulse can be defined as the change in momentum that an object experiences as a result of a force being applied to it over a period of time. In simpler terms, impulse is the "push" that an object receives from a force acting on it for a certain amount of time. The more force applied, or the longer the time the force is applied, the greater the impulse and the greater the change in momentum of the object. It's important to note that impulse is a vector quantity, meaning it has both magnitude and direction. Impulse is a measure of the ability of a force to cause an object to change its velocity, and can be used to explain many phenomena in physics, such as why a heavy object is harder to stop than a lighter one, or why a soccer ball changes direction when it is kicked.
Vraag 27 Verslag
One of the features of the fission process is that
Antwoorddetails
The fission process refers to the splitting of an atomic nucleus into two or more smaller nuclei. One of the key features of the fission process is that it can lead to a chain reaction, where the neutrons released during fission can go on to trigger additional fission reactions. This chain reaction can produce a large amount of energy, as is the case in nuclear power plants and nuclear weapons. Another feature of the fission process is that it typically produces radioactive products. These products can remain radioactive for a long time, which is why there are concerns about the safe disposal of nuclear waste. Additionally, the fission process typically releases neutrons, which can go on to cause further fission reactions. This neutron release is an important aspect of the chain reaction mentioned earlier. Finally, the fission process is accompanied by a small loss of mass, which is converted into energy according to Einstein's famous equation E=mc². This loss of mass is what allows the large amount of energy to be released during a fission reaction.
Vraag 28 Verslag
An object weighs 30N in air and 21N in water. The weight of the object when completely immersed in a liquid of relative density 1.4 is
Antwoorddetails
Weight of water displaced = upthrust = 30 - 21 = 9N
Mass of water displaced = 910
= 0.9kg
Volume of object = 9 × 10−4
m3
= (9 × 10−4
) (1.4 ×103)
= 1.26kg = 12N
30 - 12.6 = 17.4N
Vraag 29 Verslag
The density of 400cm3 of palm oil was 0.9gcm-3 before frying. If the density of the oil was 0.6gcm-3 after frying, assuming no loss of oil due to spilling, its new volume was?
Antwoorddetails
The density of a substance is defined as its mass per unit volume. Therefore, the mass of the palm oil before frying was: Mass = Density x Volume = 0.9 g/cm³ x 400 cm³ = 360 g After frying, the mass of the palm oil remains the same, but its density changes to 0.6 g/cm³. Therefore, the new volume of the palm oil can be calculated by rearranging the density formula: Volume = Mass / Density = 360 g / 0.6 g/cm³ = 600 cm³ So the new volume of the palm oil after frying is 600 cm³. is the correct answer.
Vraag 30 Verslag
A man walks 1km due east and then 1 km due north. His displacement is
Antwoorddetails
The man first walks 1 km due east, which means he has moved 1 km horizontally to the right of his starting point. Then, he walks 1 km due north, which means he has moved 1 km vertically upwards from his previous position. To find his displacement, we need to draw a straight line from his starting point to his final position, which represents the shortest distance between the two points. This line is called the displacement vector. We can use the Pythagorean theorem to calculate the length of the displacement vector. The horizontal and vertical distances are the two legs of a right-angled triangle, and the hypotenuse is the length of the displacement vector. Using the Pythagorean theorem, we get: displacement = √((1 km)^2 + (1 km)^2) = √2 km The direction of the displacement vector is the angle between the displacement vector and the due north direction. We can find this angle using trigonometry. The tangent of the angle is the ratio of the horizontal distance to the vertical distance: tan(θ) = (1 km) / (1 km) = 1 Using a calculator, we can find that the angle is 45°. Therefore, the man's displacement is √2 km in the direction N 45° E. So, the correct answer is √2km N 45°E.
Vraag 31 Verslag
A resistor connected to a 12V battery draws a current of 2A. The energy dispatched in the resistor in 5 minutes is ___.
Antwoorddetails
To calculate the energy dispatched in the resistor, we need to use the formula: Energy = Power x Time Where Power is the amount of electrical power consumed by the resistor, and is equal to the product of the voltage across the resistor and the current flowing through it: Power = Voltage x Current In this case, the voltage across the resistor is 12V, and the current flowing through it is 2A. Therefore, the power consumed by the resistor is: Power = 12V x 2A = 24W Now, we can substitute this value of power along with the given time of 5 minutes into the formula for energy: Energy = 24W x 5min x 60s/min = 7,200J Therefore, the energy dispatched in the resistor in 5 minutes is 7,200J. is the correct answer.
Vraag 32 Verslag
Which of the following statements are TRUE of isotopes?
I. Isotopes of an element have the same chemical properties because they have the same number of electrons
II. Isotopes of elements are normally separated using physical properties
III. Isotopes of an element have the same number of protons in their nuclei
Antwoorddetails
The correct answer is "I and III only". Isotopes of an element have the same number of protons in their nuclei, meaning they have the same atomic number and are therefore the same element. Because of this, they have the same chemical properties. However, isotopes of an element have different numbers of neutrons in their nuclei, which means they have different atomic masses. This is why isotopes can be separated using physical properties such as their mass or other characteristics related to their mass.
Vraag 33 Verslag
The pitch of an acoustic device can be increased by
Antwoorddetails
The pitch of an acoustic device refers to the perceived highness or lowness of a sound, and is determined by the frequency of the sound wave. To increase the pitch of an acoustic device, you need to increase the frequency of the sound wave. This can be done by increasing the number of vibrations per second that the device produces. So, the correct answer is to "increase the frequency".
Vraag 34 Verslag
The efficiency of energy conversion on the energy flow through a hydroelectric power is?
Antwoorddetails
Efficiency = useful energy output from machineenergy input into machine
= E3E2
Vraag 35 Verslag
In the diagram given the hanging mass m2 is adjusted until m1 is on the verge of sliding. The coefficient of static
Antwoorddetails
I think the correct option is C (m2m1 ). The coefficient of friction is a ratio of two forces and hence g will cancel out.
Vraag 36 Verslag
Natural radioactivity consists of the emission of
Antwoorddetails
Radioactive decay releases different types of energetic emissions. The three most common types of radioactive emissions are alpha particles, beta particles, and gamma rays.
Vraag 37 Verslag
A pulley system has three pulleys in the fixed block and two in the movable block and if the pulley has an efficiency of 72%, the mechanical advantage of the system is?
Antwoorddetails
To make it easier understood
MA = E × Vr/100
Vr in a pulley system is the number of pulleys and in this case we have 5 (3 and 2)
So
MA = 72 × 5 = 360/100 = 3.6
Thanks
Vraag 38 Verslag
Electrical power is transmitted at a high voltage rather than a low voltage because the amount of energy loss is due to
Antwoorddetails
The primary reason that power is transmitted at high voltages is to increase efficiency. As electricity is transmitted over long distances, there are inherent energy losses along the way. High voltage transmission minimizes the amount of power lost as electricity flows from one location to the next. How? The higher the voltage, the lower the current. The lower the current, the lower the resistance losses in the conductors. And when resistance losses are low, energy losses are low also. Electrical engineers consider factors such as the power being transmitted and the distance required for transmission when determining the optimal transmission voltage
Vraag 39 Verslag
For what values of F and ? will the forces shown in the diagram below be in equilibrium.
Antwoorddetails
Resolve vertically, 40cos? = 20, ? = 60o
Resolve horizontally, f = 40sin? = 40sin60o
= 40(?32
)
= 20?3 N
Vraag 40 Verslag
The diagram shown represents a block-and-tackle pulley system on which an effort of W Newtons supports a load of 120.0N. If the efficiency of the machine is 40, then the value of W is?
Antwoorddetails
Let the total number of pulleys used in both the blocks be n
.
In a block-and-tackle pulley system, the velocity ratio is equal to n.
Efficiency = MAVR×100%
MA=LE,VR=n
Efficiency = LE×1n×100%
E=LEff.×n×100%
E=120N40%×6×100%
E=50N
Wilt u doorgaan met deze actie?