Ana ebu...
|
Tẹ & Di mu lati Gbe Yika |
|||
|
Pịa Ebe a ka Imechi |
|||
Ajụjụ 1 Ripọtì
The number of geometrical isomers of butene are
Akọwa Nkọwa
To understand the geometrical isomers of butene, we need to explore its structure. Butene has four carbon atoms, and there are various structural forms that butene can take. These structural forms include linear or branched chains, with a double bond present between carbon atoms.
Geometric isomerism is a type of stereoisomerism. It occurs due to restricted rotation around the double bond, leading to different spatial arrangements of groups attached to the carbons forming the double bond. The geometric isomerism primarily occurs in alkenes like butene where the positions of substituents can vary.
Let's consider the different types of butene, focusing on the possibility of geometrical isomerism:
In conclusion, for butene, only 2-butene has geometrical isomers (cis and trans). Therefore, the number of geometric isomers is 2.
Ajụjụ 2 Ripọtì
When the subsidiary quantum numbers (l) equals 1, the shape of the orbital is
Akọwa Nkọwa
The subsidiary quantum number, often referred to as the azimuthal quantum number or angular momentum quantum number, is denoted by l. This quantum number defines the shape of the atomic orbital. The value of l determines the type of orbital as follows:
For l = 1, the atomic orbital is a p orbital, which is characterized by its dumb-bell shape. This means that the electron density is concentrated in two lobes on opposite sides of the nucleus, resembling a dumb-bell.
Ajụjụ 3 Ripọtì
If the solubility of KNO3 at 300 C is 3.10 mol/dm3 a solution containing 303g/dm3 KNO3 is likely to be
Akọwa Nkọwa
To determine the condition of the solution containing KNO3 at 300C, let's start by calculating the molarity of the given solution.
The molecular weight of KNO3 (Potassium Nitrate) is approximately:
Thus, KNO3 = 39 + 14 + (16 * 3) = 101 g/mol.
Now, to determine the molarity of the given solution:
Compare with the solubility at 300C:
If we compare the values:
Hence, the solution is unsaturated because it can still dissolve more KNO3 until it reaches the solubility limit of 3.10 mol/dm3.
Ajụjụ 4 Ripọtì
Na2 X ⇌ 2Na+ + X2−
The bond between Na and X is likely to be
Akọwa Nkọwa
The bond between Na and X is most likely to be ionic. Let's break this down simply:
In the equation provided:
Na2X ⇌ 2Na+ + X2−
The sodium (Na) atoms become positively charged ions (Na+), while X becomes a negatively charged ion (X2−). This change in charge occurs because sodium atoms donate electrons to the X atom. The donation of electrons by sodium to X indicates a transfer of electrons, which is a hallmark of an ionic bond.
In an ionic bond, electrons are transferred from one atom to another, resulting in a positively charged ion and a negatively charged ion. These oppositely charged ions attract each other, forming a strong ionic bond.
In summary, since sodium (Na) donates electrons to X forming ions, the bond between Na and X is most likely to be ionic.
Ajụjụ 5 Ripọtì
Alkylation of benzene is catalyzed by
Akọwa Nkọwa
Alkylation of benzene is a part of a reaction class called **Friedel-Crafts alkylation**. In this reaction, an alkyl group is transferred to the aromatic benzene ring, making it a more complex molecule. The catalyst used in this process is **aluminium chloride (AlCl3)**.
Here's how the reaction typically works:
In contrast, the other options wouldn't effectively catalyze alkylation of benzene for the following reasons:
Therefore, **aluminium chloride** is the catalyst used for the alkylation of benzene in Friedel-Crafts reactions.
Ajụjụ 6 Ripọtì
Biodegradable pollutants are not safe in water systems because they can cause
Akọwa Nkọwa
Biodegradable pollutants are substances that can be broken down by natural processes and microorganisms. However, when they are present in water systems, they can lead to several environmental and health issues. One of the main concerns is their potential to cause ill health. Here's why:
When biodegradable pollutants such as organic waste are introduced into water bodies, they are decomposed by bacteria and other microorganisms. This process consumes dissolved oxygen in the water. As the oxygen levels decrease, aquatic life such as fish and plants may suffer or die due to a lack of oxygen, disrupting the entire aquatic ecosystem.
This situation is known as eutrophication, which can lead to the excessive growth of algae, commonly referred to as algal blooms. These blooms often produce toxins that are harmful to both aquatic life and humans. Furthermore, when this polluted water is used for drinking, agriculture, or recreational purposes, it poses serious health risks to humans. These risks may include gastrointestinal infections, neurological disorders, and skin problems.
In addition, as the pollutants decompose, foul smells may be released, which can affect air quality in the vicinity, although the primary concern with biodegradable pollutants in water is related to how they affect water quality and health.
Therefore, it is crucial to properly manage and treat biodegradable pollutants before they enter water systems to prevent these health hazards. Failure to do so can result in significant environmental and health issues.
Ajụjụ 7 Ripọtì
How much of 5g of radioactive element whose half life is 50days remains after 200days?
Akọwa Nkọwa
To determine how much of a radioactive element remains after a certain period, we use the concept of half-life. The half-life of a substance is the time it takes for half of the initial amount of a radioactive element to decay. In this example, the half-life is given as 50 days.
We want to know how much of a 5g sample remains after 200 days. First, calculate how many half-lives occur in 200 days:
Number of half-lives = Total time elapsed / Half-life
= 200 days / 50 days
= 4 half-lives
Next, we calculate the remaining amount after each half-life period:
After 200 days, 0.31g of the radioactive element remains.
Ajụjụ 8 Ripọtì
An example of a physical change is
Akọwa Nkọwa
An example of a physical change is the boiling of water. Let me explain why this is considered a physical change:
A physical change is a change where the substances involved do not change their chemical composition, meaning they remain the same substance, just in a different form or appearance. In the case of boiling water, when water is heated to its boiling point, it changes from a liquid to a gas (steam), but it is still comprised of water molecules (H2O). The change is reversible, so the gas can condense back into liquid water without any new substance being formed.
On the other hand:
Thus, boiling water is an excellent example of a physical change as it involves only the change in the state of matter without altering the substance's identity.
Ajụjụ 9 Ripọtì
A gas when mixed with oxygen, it produces a very hot and early controllable flame. What is the name of the flame and where is it used?
Akọwa Nkọwa
The Oxy-ethylene flame is a type of flame produced when oxygen is mixed with a gas called ethylene. This mixture results in a flame that is extremely hot and can be easily controlled. Such a flame is often used in industrial applications related to cutting and welding metals. The heat generated by an oxy-ethylene flame is sufficient to melt metals, allowing them to be welded together or cut apart efficiently.
Ajụjụ 10 Ripọtì
One of the following is not a water pollutant?
Akọwa Nkọwa
Water pollutants are substances that, when introduced into the water, cause harm to ecosystems, human health, and the overall quality of the water. Each of the options provided has the potential to be considered a water pollutant, except for one. Let's explain them:
1. Inorganic fertilizers: These are substances mainly composed of synthetic chemicals, including nitrates and phosphates. When these fertilizers enter water bodies, they can lead to nutrient pollution, which causes excessive growth of algae (eutrophication), leading to a decrease in oxygen levels in the water, harming aquatic life.
2. Warm water affluent: This refers to the discharge of heated water into natural water bodies. This heat contamination can change the temperature of the water, affecting the metabolism of aquatic life and leading to thermal pollution.
3. Oxygen gas: Oxygen gas is a fundamental component of the Earth's atmosphere and is not considered a water pollutant. In fact, dissolved oxygen is crucial for the survival of aquatic organisms. Rather than causing any harm, adequate levels of dissolved oxygen in water bodies are essential for maintaining healthy aquatic ecosystems.
4. Biodegradable waste: These are organic materials that decompose in the environment. When introduced in large quantities into water bodies, they can consume a significant amount of dissolved oxygen as they decompose, which can lead to depletion of oxygen levels and cause harm to aquatic life, making them pollutants in aquatic ecosystems.
Given the explanations above, oxygen gas is the option that is not a water pollutant. It is vital for the health of aquatic ecosystems, unlike the other options, which can all lead to some form of pollution in water bodies.
Ajụjụ 11 Ripọtì
Determine the empirical formula of an oxide of sulphur containing 60% of oxygen
[S = 32, O = 16 ]
Akọwa Nkọwa
To determine the empirical formula of an oxide of sulfur containing 60% of oxygen, we have to understand the concept of empirical formulas, which give the simplest whole-number ratio of atoms of each element in a compound.
Step 1: Assume 100g of the compound. In 100g of the compound:
Step 2: Convert masses to moles. Use the molar mass to find moles.
Step 3: Determine the simplest whole-number ratio.
To find the ratio, divide each mole value by the smallest number of moles calculated:
The simplest ratio of S:O is 1:3.
Thus, the empirical formula of the oxide is SO3.
Ajụjụ 12 Ripọtì
H2 S(g) + Cl2 (g) → 2HCl(g) + S(s)
What is the change in oxidation state of sulphur from reactant to product?
Akọwa Nkọwa
To determine the change in oxidation state of sulfur, follow these steps:
In the given reaction:
H2S(g) + Cl2(g) → 2HCl(g) + S(s)
We observe:
Thus, the change in oxidation state of sulfur when moving from the reactants to the products is from **-2** to **0**. This indicates that sulfur is being oxidized.
The correct answer is that the oxidation state of sulfur changes from **-2 to 0**.
Ajụjụ 13 Ripọtì
The hybridization scheme in ethyne is
Akọwa Nkọwa
Ethyne, also known as acetylene, is a simple alkyne with the chemical formula C2H2. In ethyne, each carbon atom is bonded to two other atoms: one hydrogen atom and the other carbon atom. The molecular structure of ethyne is linear, with a triple bond between the two carbon atoms.
To determine the hybridization scheme in ethyne, we need to examine the arrangement of the electron pairs around each carbon atom. In ethyne, each carbon atom is forming two sigma (σ) bonds and two pi (π) bonds. Let's explain:
When we consider the hybridization of the carbon atoms, we focus on the formation of sigma bonds and lone pairs. In ethyne, each carbon atom utilizes two orbitals to form sigma bonds: one with the hydrogen atom and one with the other carbon atom. This implies that each carbon atom in ethyne must use two hybrid orbitals.
The two hybrid orbitals formed by each carbon atom in ethyne are a result of mixing one s orbital with one p orbital. This hybridization is referred to as sp hybridization, characterized by a linear electron geometry. The remaining two unhybridized p orbitals on each carbon atom are responsible for forming the two pi bonds in the triple bond.
In conclusion, the hybridization scheme in ethyne is sp.
Ajụjụ 14 Ripọtì
Akọwa Nkọwa
When a strong acid reacts with a strong base, the result is the formation of a neutral salt. This reaction is a part of a chemical process known as neutralization.
Let's break it down further:
During a neutralization reaction, the hydrogen ions (H⁺) from the acid combine with the hydroxide ions (OH⁻) from the base to form water (H₂O). Meanwhile, the remaining ions (for example, Na⁺ from NaOH and Cl⁻ from HCl) come together to form a compound known as a salt. This salt does not affect the acidity or basicity of the solution, hence it is considered neutral.
Therefore, the salt formed in such a reaction is a neutral salt, which is what is referred to as a normal salt in the options provided.
Ajụjụ 15 Ripọtì
An example of a compound that is acidic in solution is
Akọwa Nkọwa
Phosphoric acid is a weak acid that can donate three hydrogen ions in water. Phosphoric acid partially ionizes when dissolved in an aqueous solution.
Ajụjụ 16 Ripọtì
An organic compound with general formula RCOR' is an
Akọwa Nkọwa
The general formula RCOR' represents a class of organic compounds known as ketones. In this formula, R and R' are alkyl groups, which are chains of carbon and hydrogen atoms. The CO in the middle is a carbonyl group, which consists of a carbon atom double-bonded to an oxygen atom. Therefore, with the presence of two alkyl groups on either side of the carbonyl group, the compound is categorized as a ketone, scientifically referred to as an alkanone.
Here is a simple breakdown of the terms:
Hence, by looking at the general formula RCOR', the organic compound in question is undoubtedly an alkanone.
Ajụjụ 17 Ripọtì
The reaction between alkanoic acids and alkanols in the presence of an acid catalyst is known as
Akọwa Nkọwa
The reaction between alkanoic acids and alkanols in the presence of an acid catalyst is known as esterification.
An alkanoic acid, also known as a carboxylic acid, is a type of organic acid that contains a carboxyl group (-COOH). An alkanol, commonly referred to as an alcohol, contains a hydroxyl group (-OH).
When an alkanoic acid reacts with an alkanol in the presence of an acid catalyst (commonly sulfuric acid), they combine to form an ester and water. This particular reaction is termed esterification. The acid catalyst speeds up the reaction by donating protons, which helps in breaking and forming new bonds.
Here's a simplified view of the reaction:
1. Alkanoic Acid (R-COOH) + Alkanol (R'-OH) -> Ester (R-COOR') + Water (H2O)
The key characteristics of esterification are:
Therefore, in summary, the process described is esterification.
Ajụjụ 18 Ripọtì
The IUPAC nomenclature of the compound above is
Akọwa Nkọwa
The IUPAC nomenclature of the compound above is 2-methylpropan-2-ol.
Ajụjụ 19 Ripọtì
The volume in cm3 of a 0.12 moldm−3 HCl required to completely neutralize a 20cm3 of 0.20 moldm−3 of NaOH is
Akọwa Nkọwa
To find the volume of HCl that is required to completely neutralize the NaOH solution, we need to use the concept of a neutralization reaction. A neutralization reaction occurs when an acid and a base react to form water and a salt, thus neutralizing each other.
In this particular reaction, the balanced chemical equation is:
HCl + NaOH → NaCl + H2O
Here, the equation tells us that one mole of HCl reacts with one mole of NaOH. Therefore, the molar ratio of HCl to NaOH is 1:1.
First, let's determine the number of moles of NaOH present in 20 cm3 solution:
Number of moles of NaOH = Concentration (mol/dm3) × Volume (dm3)
= 0.20 mol/dm3 × 20 cm3 × (1 dm3 / 1000 cm3)
= 0.20 × 0.020
= 0.004 moles
Since the reaction is in a 1:1 ratio, the number of moles of HCl required is also 0.004 moles.
Now, let's determine the volume of HCl solution required:
Volume of HCl (dm3) = Number of moles / Concentration
= 0.004 moles / 0.12 mol/dm3
= 0.03333 dm3
Convert this volume from dm3 to cm3:
0.03333 dm3 × 1000 cm3 / dm3 = 33.33 cm3
Therefore, the volume of HCl required is 33.33 cm3.
Ajụjụ 20 Ripọtì
147 N + X → 146 C + 11 P
In the reaction above, X is
Akọwa Nkọwa
To determine what particle X is, we need to understand the reaction given:
N + X → \146\\ C + \11\ \P
The notation in nuclear reactions is important. The numbers on top (superscripts) are the mass numbers, which represent the total number of protons and neutrons. The numbers on the bottom (subscripts) are the atomic numbers, which represent the number of protons.
Here's what we have:
Let's consider the conservation of mass and charge:
1. **Conservation of Mass Number:** The mass number of the reactants should equal the mass number of the products. If N has a mass number 'a' and X has a mass number 'b', then:
a + b = 146 + 11 = 157
2. **Conservation of Atomic Number:** The total number of protons should also be conserved. If N has an atomic number 'c' and X has an atomic number 'd', then:
c + d = 6 + 1 = 7
To satisfy these rules:
- Option X could be a **neutron**, as neutrons have a mass number of 1 and an atomic number of 0, which means they do not affect the atomic number but contribute to the mass number.
Let's verify:
- Assume X is a neutron with a mass number of 1 and an atomic number of 0, which fits the requirement for conservation of atomic mass:
Therefore, X is a neutron because it helps conserve both the mass number and the atomic number in the given nuclear reaction.
Ajụjụ 21 Ripọtì
CH3 -CH2 -OH and CH3 -O-CH3
The relationship between the two compounds above, is that they are
Akọwa Nkọwa
The relationship between the two compounds is that they are isomers.
To understand why these compounds are isomers, let's break down their structures and definitions:
1. Structures of the Compounds:
2. Definitions:
Both compounds have the same molecular formula: C2H6O. However, they have different arrangements of their atoms. Ethanol has a hydroxyl group (-OH) attached to an ethyl group (CH3-CH2-), while dimethyl ether involves two methyl groups (CH3-) bonded to an oxygen atom (O). This difference in structure leads to different chemical and physical properties, despite having the same molecular formula. Hence, these two compounds are classified as isomers.
Ajụjụ 22 Ripọtì
Sulphur(IV)oxide can be used as a
Akọwa Nkọwa
Sulphur(IV) oxide has many uses including food preservation, refrigeration, laboratory reagent and solvent, sulphuric acid production, fumigant etc.Sulphur(IV) oxide is a good refrigerant because it has a high heat of evaporation and can be easily condensed.
Ajụjụ 23 Ripọtì
Aqueous solution of sodium hydroxide can be used to test for the presence of : I. Ca2+ , II. Zn2+ , III. Cu2+
Akọwa Nkọwa
Aqueous solution of sodium hydroxide (NaOH) is a versatile reagent in chemistry, often used to test for the presence of metal ions. When sodium hydroxide is added to solutions containing certain metal ions, it forms precipitates that are characteristic of those ions. Here's how it interacts with each of the mentioned ions:
Calcium ions (Ca2+): When NaOH is added to a solution containing calcium ions, a white precipitate of calcium hydroxide (Ca(OH)2) can form. However, the precipitate is only slightly soluble in water, and this reaction is not the most definitive test for calcium ions.
Zinc ions (Zn2+): When sodium hydroxide is added to a solution containing zinc ions, a white gelatinous precipitate of zinc hydroxide (Zn(OH)2) forms. This precipitate is soluble in excess NaOH, leading to a clear, colorless solution. This reaction is used to test for zinc ions.
Copper ions (Cu2+): When NaOH is added to a solution containing copper ions, a pale blue precipitate of copper(II) hydroxide (Cu(OH)2) forms. This precipitate is insoluble even in excess NaOH, and the formation of this blue precipitate is a common test for copper ions.
Therefore, an aqueous solution of sodium hydroxide can be used to test for the presence of all three ions: calcium (Ca2+), zinc (Zn2+), and copper (Cu2+). The reaction and precipitate formation with each ion serve as indicators of their presence. Thus, the correct answer is:
I, II and III.
Ajụjụ 24 Ripọtì
The Van der waals forces of attraction operates between
Akọwa Nkọwa
The Van der Waals forces of attraction operate between molecules. These are weak forces of attraction that occur due to momentary changes in the electron distribution within molecules. Here's a simple explanation:
Therefore, the forces can affect the physical properties of molecular compounds, such as boiling and melting points, but do not generally involve charged particles like cations or anions.
Ajụjụ 25 Ripọtì
Concentrated sodium chloride solution is electrolyzed using mercury cathode and graphite anode. The products at the anode and the cathode respectively are
Akọwa Nkọwa
When a concentrated sodium chloride solution is electrolyzed using a mercury cathode and graphite anode, the products are hydrogen gas at the cathode and chlorine gas at the anode
At the anode, 2Cl− → Cl2 + 2e−
At the cathode, 2H+ + 2e− → H2
During the electrolysis, hydrogen and chloride ions are removed from solution whereas sodium and hydroxide ions are left behind in solution. This means that sodium hydroxide is also formed during the electrolysis of sodium chloride solution.
Ajụjụ 26 Ripọtì
A typical chemical reaction will be spontaneous if
Akọwa Nkọwa
In thermodynamics, a chemical reaction is considered spontaneous when it occurs naturally under a given set of conditions without needing to be driven by an external force. The spontaneity of a reaction is best determined by the Gibbs Free Energy change, denoted as ΔG.
The criteria for spontaneity is as follows:
Now, let's relate this to the given options:
Thus, a chemical reaction is spontaneous when the Gibbs Free Energy change (ΔG) is negative.
Ajụjụ 27 Ripọtì
CuOs + H2 (g ) ⇌ Cus + H2 O(g )
In the equation above, the effect of increased pressure on the equilibrium position is that
Akọwa Nkọwa
To understand the effect of increased pressure on the equilibrium position of the given reaction:
CuO(s) + H2(g) ⇌ Cu(s) + H2O(g)
We need to consider Le Chatelier's Principle. According to this principle, if a system at equilibrium is subjected to a change in pressure, temperature, or concentration, the system will adjust itself to counteract the effect of the change and re-establish equilibrium.
For the reaction in question, let's consider the number of gas molecules on each side of the equation:
Since both sides of the equation have the same number of gas molecules, an increase in pressure will not favor a shift to either the left or the right because the number of moles of gas on both sides of the equilibrium is the same.
Therefore, the effect of increased pressure on the equilibrium is that there is no effect. The position of the equilibrium remains unchanged, and pressure changes do not influence the production of more H2(g) or H2O(g) in this specific reaction.
Ajụjụ 28 Ripọtì
The ions responsible for permanent hardness in water are sulphates of
Akọwa Nkọwa
Permanent hardness in water is mainly caused by the presence of certain metal ions, specifically the **sulfates (SO₄²⁻)** and **chlorides (Cl⁻)** of calcium (Ca) and magnesium (Mg). These compounds do not precipitate out when the water is boiled, which means they remain dissolved and continue to contribute to the hardness of the water.
Among the options you provided, the ions responsible for permanent hardness in water are the **sulfates of calcium (Ca²⁺)** and **magnesium (Mg²⁺)**. The presence of calcium sulfate (CaSO₄) and magnesium sulfate (MgSO₄) in water keeps it hard.
When compared to temporary hardness, which can be removed by boiling the water to precipitate bicarbonates, **permanent hardness cannot be removed by boiling**. Instead, methods such as ion exchange or the use of water softeners are required to remove these ions from the water.
In summary, the ions causing permanent hardness in water are the **sulfates of calcium (Ca²⁺)** and **magnesium (Mg²⁺)**. These ions remain dissolved and continue to make the water hard, despite boiling.
Ajụjụ 29 Ripọtì
The product formed when ethyne is passed through a hot tube containing finely divided iron is
Akọwa Nkọwa
When **ethyne** (also known as acetylene) is passed through a hot tube containing finely divided iron, a process called decomposition occurs. The heat causes the ethyne molecules to break down, and under these conditions, they **re-combine** to form structures that result in more complex molecules.
The key transformation involves the conversion of these ethyne molecules into **aromatic compounds**. Aromatic compounds, such as **benzene**, have a distinct ring structure and are characterized by **stability** due to resonance (a phenomenon where electrons are delocalized over a certain structure, providing extra stability).
Thus, when ethyne is passed through a hot iron tube, it undergoes trimerization to form benzene, an **aromatic** compound. Therefore, the product formed is **aromatic**.
Ajụjụ 30 Ripọtì
A type of isomerism that ClCH=CHCl can exhibit is
Akọwa Nkọwa
ClCH=CHCl can exhibit geometrical isomerism and positional isomerism. ClCH=CHCl can exhibit positional isomerism because the positions of the functional groups or substituent atoms are different. Positional isomerism occurs when compounds with the same molecular formula have different properties due to the difference in the position of a functional group, multiple bond, or branched chain.
Ajụjụ 31 Ripọtì
When n = 3, the quantum number of an element is
Akọwa Nkọwa
Quantum numbers are a set of numbers that describe the position and energy of an electron in an atom.
When the quantum number is equal to 3, the possible values for the azimuthal quantum number are 0, 1, and 2:
The three possible sub-shells when n=3 are 3s, 3p, and 3d.
Ajụjụ 32 Ripọtì
At a given temperature and pressure, a gas X diffuses twice as fast as gas Y. It follows that
Akọwa Nkọwa
To solve the problem, we can use **Graham's law of effusion**. This law states that the rate of effusion (or diffusion) of a gas is inversely proportional to the square root of its molar mass. Mathematically, this is represented as:
Rate of diffusion of Gas X / Rate of diffusion of Gas Y = sqrt(Molar mass of Gas Y / Molar mass of Gas X)
According to the given information, gas X diffuses **twice as fast** as gas Y. This implies:
2 = sqrt(Molar mass of Gas Y / Molar mass of Gas X)
To eliminate the square root, square both sides of the equation:
(2)^2 = Molar mass of Gas Y / Molar mass of Gas X
This simplifies to:
4 = Molar mass of Gas Y / Molar mass of Gas X
Rearranging the equation, we find:
Molar mass of Gas Y = 4 * Molar mass of Gas X
This means that **Gas Y is four times as heavy as Gas X**. Therefore, the correct statement is:
Ajụjụ 33 Ripọtì
Rust on the surface of a metal sheet contains
Akọwa Nkọwa
Rust on the surface of a metal, specifically on **iron**, is primarily composed of **hydrated iron(III) oxide**. The rusting process occurs when **iron** reacts with **oxygen** and **water** from the environment. This chemical reaction typically produces a compound called **iron(III) oxide**, which is then combined with water molecules, resulting in **hydrated iron(III) oxide**. This hydrated state gives rust its characteristic flaky and reddish-brown appearance.
Ajụjụ 34 Ripọtì
The IUPAC nomenclature of the complex K4 Fe(CN)6 is
Akọwa Nkọwa
The compound in question is K4[Fe(CN)6]. To name this complex using IUPAC nomenclature, let's break it down into parts:
Next, consider the oxidation state of Fe:
Finally, we consider the oxidation state of the iron. Since calculations show that it is +2, the complex ion is named based on its oxidation state.
Hence, the IUPAC name of this compound is potassium hexacyanoferrate(II).
Ajụjụ 35 Ripọtì
Biuret test is a chemical test used for detecting the presence of
Akọwa Nkọwa
The Biuret test is a chemical test used for detecting the presence of proteins. When you perform a Biuret test, you are looking for peptide bonds, which are the connections between the amino acids in a protein. This is how it works:
The test is specifically tailored to proteins because carbohydrates, amines, and alkanoates do not exhibit the required peptide bonds necessary for this color change. Therefore, the Biuret test is not suitable for detecting these compounds.
Ajụjụ 36 Ripọtì
An example of highly unsaturated hydrocarbon is
Akọwa Nkọwa
To determine a highly unsaturated hydrocarbon, we must first understand the concept of saturation in hydrocarbons. **Saturated hydrocarbons** are compounds that contain the maximum possible number of hydrogen atoms, single-bonded to carbon atoms, and they are alkanes. **Unsaturated hydrocarbons** have one or more double or triple bonds between carbon atoms, which reduces the number of hydrogen atoms that can be bonded.
Examining the given options:
Based on this analysis, **C2H2** (ethyne) is a highly unsaturated hydrocarbon due to the presence of a **triple bond**. The triple bond signifies a greater level of unsaturation compared to double bonds in hydrocarbons like ethene (C2H4).
Ajụjụ 37 Ripọtì
Scandium is not regarded as a transition metal because its ion has
Akọwa Nkọwa
Scandium is not regarded as a transition metal because its ion has no electron in the d-orbital.
To understand this, let's first define a transition metal. A transition metal is defined as an element that has an incomplete d-subshell in either its elemental form or in any of its common oxidation states.
When Scandium (Sc) loses electrons to form its most common ion (Sc3+), it loses three electrons. These electrons are removed from the 4s and 3d orbitals. The electron configuration for Scandium is [Ar] 3d1 4s2. Upon losing three electrons to form Sc3+, the resulting electron configuration is [Ar], which means there are:
As a result, there are no electrons in the d-orbital of the Scandium ion, which does not meet the criteria for a transition metal.
Ajụjụ 38 Ripọtì
An example of a physical change is
Akọwa Nkọwa
A physical change involves a change in the physical properties of a substance, without a change in its chemical composition. This means that the substance remains the same at the molecular level, despite how it might appear differently.
An example of a physical change from the given options is the liquefaction of liquids. In this process, a substance transitions from a solid or gas to a liquid state. This change is purely physical because the molecular structure of the substance does not change; only its state or form does. Importantly, such a change is usually reversible, meaning the substance can return to its original state. For instance, water can change into ice (frozen) or steam (vapor), and can still revert back to liquid water.
On the other hand, the other options involve chemical changes, where the original substances undergo chemical reactions to form new substances with different properties, thus altering the molecular structure depending on the option.
Ajụjụ 39 Ripọtì
After breathing in a test tube that contains acidified K2 Cr2 O7 , a man noticed the change in the colour of K2 Cr2 O7 from orange to green. This suggests the presence of
Akọwa Nkọwa
When the acidified potassium dichromate (\(K_2Cr_2O_7\)) solution changes from orange to green, it indicates a chemical reaction is occurring where the chromium in the dichromate ion is being reduced. In this context, acidified \(K_2Cr_2O_7\) is commonly used as an oxidizing agent.
The change in color from orange (dichromate ion) to green (chromium ion) suggests that the dichromate ion is being reduced, and something in the person's breath is being oxidized.
The substances that can be oxidized in the breath are organic compounds, typically those containing functional groups with oxidizable hydrogen atoms or structures.
Therefore, when the color of acidified potassium dichromate changes from orange to green, it suggests the presence of an alkanol.
Ajụjụ 40 Ripọtì
The law which states that a pure chemical compound, no matter how it is made, will be made up of the same elements contained in the same proportion by mass is
Akọwa Nkọwa
The law that states a pure chemical compound, no matter how it is made, will be made up of the same elements contained in the same proportion by mass is the law of definite proportion.
To explain this simply, let's consider water as an example. Water is made up of hydrogen and oxygen. According to the law of definite proportion, a sample of pure water taken from anywhere in the world will always contain the same ratio of hydrogen to oxygen by mass. Specifically, water will always have approximately 88.8% oxygen and 11.2% hydrogen by mass.
This is because a chemical compound has a fixed composition, regardless of the process used to create it or the source from which it is derived. The law of definite proportion, also known as the law of constant composition, is fundamental in chemistry because it supports the idea that chemical compounds are composed of elements in specific and fixed ratios. This does not change regardless of how the compound is prepared or where it is found.
Ị ga-achọ ịga n'ihu na omume a?