Ana ebu...
|
Tẹ & Di mu lati Gbe Yika |
|||
|
Pịa Ebe a ka Imechi |
|||
Ajụjụ 1 Ripọtì
6g of Mg was to 100cm3 of 1 moldm3 H2 SO4 . What mass of Mg remained undissolved? (Mg = 24)
Akọwa Nkọwa
The balanced chemical equation for the reaction between magnesium (Mg) and sulfuric acid (H2SO4) is: Mg + H2SO4 -> MgSO4 + H2 According to the equation, one mole of Mg reacts with one mole of H2SO4 to produce one mole of magnesium sulfate (MgSO4) and one mole of hydrogen gas (H2). Since the concentration of the sulfuric acid is 1 moldm3, this means that there is one mole of H2SO4 in every 1 liter (1000 cm3) of solution. To determine the amount of Mg that reacts with the H2SO4, we need to use stoichiometry. One mole of Mg reacts with one mole of H2SO4, so the amount of Mg that reacts with 1 moldm3 of H2SO4 is given by: 6g / 24g/mol = 0.25 mol Since the reaction is 1:1, this means that 0.25 mol of H2SO4 is consumed in the reaction. The volume of the solution is 100cm3 (0.1 dm3), so the amount of H2SO4 in the solution is: 1 mol/dm3 x 0.1 dm3 = 0.1 mol The amount of H2SO4 that remains after the reaction is: 0.1 mol - 0.25 mol = -0.15 mol This negative value means that all of the H2SO4 was consumed in the reaction, and there is excess Mg left over. The mass of Mg that remains undissolved is given by: 0.15 mol x 24g/mol = 3.6g Therefore, the correct answer is 3.6g.
Ajụjụ 2 Ripọtì
A colored gas that is known to be poisonous and can readily damage the mucous lining of the lungs is?
Akọwa Nkọwa
The colored gas that is known to be poisonous and can readily damage the mucous lining of the lungs is chlorine. Chlorine is a highly reactive chemical element that is used in the production of many everyday products, such as paper, textiles, and plastics. It is also used as a disinfectant in swimming pools and water treatment plants. Inhaling chlorine gas can cause severe respiratory problems, including coughing, chest pain, and difficulty breathing. Prolonged exposure to chlorine can cause lung damage, and in extreme cases, it can be fatal. Chlorine gas is also highly irritating to the eyes, skin, and mucous membranes. It is important to handle chlorine with caution and to use appropriate protective gear, such as gloves and respiratory masks, when working with it. Proper ventilation and monitoring of chlorine levels are also essential to prevent exposure to this toxic gas.
Ajụjụ 3 Ripọtì
The following non-metal form acidic oxides with oxygen except?
Akọwa Nkọwa
An acidic oxide is an oxide that reacts with water to form an acidic solution. Non-metals have a greater tendency to form acidic oxides than metals. Therefore, among the given options, the non-metal that does not form an acidic oxide with oxygen would be the one that does not react with water to form an acidic solution. Out of the given options, chlorine is the non-metal that does not form acidic oxides with oxygen. Chlorine reacts with oxygen to form a number of oxides such as chlorine monoxide (Cl2O), chlorine dioxide (ClO2), and chlorine trioxide (ClO3), but none of these oxides react with water to form an acidic solution. Instead, they react with water to form oxyacids or oxoacids such as hypochlorous acid (HClO), chlorous acid (HClO2), and chloric acid (HClO3), which are stronger acids than the oxides. Therefore, the correct answer is chlorine.
Ajụjụ 4 Ripọtì
Which of the following constitutes a mixture? I. Petroleum II. Rubber latex III. Vulcanizer’s solution IV. Carbon (iv) sulphide
Akọwa Nkọwa
Ajụjụ 5 Ripọtì
A chemical widely used as a fertilizer is?
Akọwa Nkọwa
The chemical widely used as a fertilizer is nitrochalk. Nitrochalk is a type of fertilizer that contains a mixture of ammonium nitrate and calcium carbonate. Ammonium nitrate provides the necessary nitrogen for plant growth, while calcium carbonate helps to balance the soil's pH level. This combination of nutrients helps to promote healthy plant growth and increase crop yields. Nitrochalk is commonly used in agriculture and gardening to fertilize crops such as corn, wheat, and soybeans, as well as fruits and vegetables.
Ajụjụ 6 Ripọtì
The sub-atomic particles located in the nucleus of an atom are?
Akọwa Nkọwa
The sub-atomic particles located in the nucleus of an atom are neutron and proton. The nucleus is the dense core of an atom that contains most of its mass. Protons are positively charged particles found in the nucleus, and they determine the atomic number of the element. Neutrons are neutral particles found in the nucleus, and they help stabilize the nucleus by balancing the repulsive forces between the positively charged protons. Electrons, on the other hand, are negatively charged particles that are located outside the nucleus in energy levels or shells. They are attracted to the positively charged nucleus by electrostatic forces and are involved in chemical bonding between atoms. The number of protons in the nucleus determines the identity of the element, while the number of neutrons determines its isotopes. Isotopes of an element have the same number of protons but different numbers of neutrons in the nucleus. In summary, the two sub-atomic particles located in the nucleus of an atom are neutron and proton.
Ajụjụ 7 Ripọtì
The IUPAC nomenclature of the structure is
Akọwa Nkọwa
The IUPAC nomenclature of the structure is "2-chloro-2-methylbutane". The name is derived by first identifying the longest carbon chain, which in this case contains four carbon atoms (butane). The carbon chain is numbered from one end to the other, giving the substituents the lowest possible numbers. Starting from either end, we can see that the first carbon atom has a chlorine atom attached to it, which is represented by the prefix "chloro-". Moving along the chain, the second carbon atom has a methyl group attached to it, which is represented by the prefix "methyl-". Since the substituents are in the second position from each other, we use the prefix "di-" to indicate two substituents in this position. Finally, we use the suffix "-ane" to indicate that the molecule is an alkane. Therefore, the correct name for this molecule is "2-chloro-2-methylbutane".
Ajụjụ 8 Ripọtì
Alkanes are used mainly?
Ajụjụ 9 Ripọtì
Zn + 2HCL → ZnCl2 + H2
What happens to zinc in the above reaction?
Akọwa Nkọwa
In the above reaction, zinc (Zn) reacts with hydrochloric acid (HCl) to form zinc chloride (ZnCl2) and hydrogen gas (H2). The chemical equation for the reaction is: Zn + 2HCl → ZnCl2 + H2 During the reaction, zinc atoms lose two electrons each and get oxidized to form positively charged zinc ions (Zn2+), as they react with the hydrogen ions (H+) from the hydrochloric acid to form zinc chloride. The hydrogen ions, on the other hand, gain an electron each and get reduced to form hydrogen gas molecules (H2). Therefore, in the given reaction, zinc is getting oxidized, as it loses electrons and forms a positively charged ion. Hence, the correct option is "oxidized."
Ajụjụ 10 Ripọtì
Which of the following is used as a moderator to control nuclear fission?
Akọwa Nkọwa
Heavy water (D2O) is used as a moderator to control nuclear fission. A moderator is a substance that is used to slow down the neutrons produced in a nuclear reaction, making them more likely to be captured by the fuel nuclei and causing further fission. Heavy water is a type of water that contains a larger amount of the isotope deuterium (D) than regular water. Deuterium has an extra neutron compared to the more common hydrogen isotope, and this makes heavy water more effective at slowing down neutrons than regular water. Lead, iron, and chromium are not typically used as moderators in nuclear reactors. Lead can be used as a shield to absorb radiation, while iron and chromium are used in the construction of the reactor vessel and other components.
Ajụjụ 11 Ripọtì
2H2 + O2 → 2H2 O
From the equation above, calculate the volume of unreacted oxygen gas if a mixture of 50cm3 of hydroden and 75cm3 of oxygen are involved
Akọwa Nkọwa
The balanced chemical equation shows that 2 moles of hydrogen gas react with 1 mole of oxygen gas to produce 2 moles of water vapor. Therefore, the stoichiometric ratio of hydrogen to oxygen is 2:1. In this problem, there are 50cm3 of hydrogen gas and 75cm3 of oxygen gas. Since the gases are at the same temperature and pressure, their volumes are directly proportional to the number of moles of gas present. Using the stoichiometric ratio, we can calculate that the amount of oxygen gas required to react completely with 50cm3 of hydrogen gas is (1/2) * 50cm3 = 25cm3. Since there are 75cm3 of oxygen gas present, there must be (75cm3 - 25cm3) = 50cm3 of unreacted oxygen gas remaining. Therefore, the volume of unreacted oxygen gas is 50cm3. Answer: 50cm3
Ajụjụ 12 Ripọtì
H2SO4 is used to remove rust on the surface of iron (picking) before electroplating. The type of reaction involved is
Akọwa Nkọwa
The type of reaction involved when using H2SO4 to remove rust on the surface of iron is a redox reaction. This is because the sulfuric acid oxidizes the iron in the rust, converting it into iron(II) sulfate, while the acid itself is reduced to sulfur dioxide. The overall reaction can be written as follows: Fe2O3(s) + 3H2SO4(aq) → Fe2(SO4)3(aq) + 3H2O(l) In this reaction, the iron in Fe2O3 is oxidized from a +3 to a +2 oxidation state, while the sulfur in H2SO4 is reduced from a +6 to a +4 oxidation state. This transfer of electrons between the reactants is what defines a redox reaction.
Ajụjụ 13 Ripọtì
If the volume of a given mass of a gas at 0ºc is 29.5cm3 . What will be the volume of the gas at 15ºc, given that the pressure remains constant.
Ajụjụ 14 Ripọtì
Wrought iron is obtained by heating cast iron in a furnace with?
Akọwa Nkọwa
Wrought iron is a type of iron that is very malleable and ductile, meaning it can be easily shaped and formed into various objects. It is obtained by heating cast iron in a furnace with haematite, also known as iron(III) oxide. When cast iron is heated with haematite in a furnace, a chemical reaction takes place where the haematite reacts with the carbon in the cast iron to produce carbon dioxide gas. This reaction also produces molten iron, which is then further heated to remove any impurities like sulfur and phosphorus. This molten iron is then poured into molds to form ingots of wrought iron. Therefore, haematite is essential in the process of obtaining wrought iron from cast iron.
Ajụjụ 15 Ripọtì
Addition of sodium chloride to water to form a solution would lead to?
Akọwa Nkọwa
The addition of sodium chloride to water to form a solution would lead to a decrease in freezing point and an increase in boiling point. This effect is known as colligative properties, which depend on the concentration of solute particles in a solution. When sodium chloride dissolves in water, it breaks down into sodium ions and chloride ions. These ions occupy space between water molecules and interfere with the formation of ice crystals during freezing. As a result, the freezing point of the solution is lowered below that of pure water. This is why we use salt to de-ice roads and sidewalks during the winter season. Similarly, the presence of solute particles in a solution also raises the boiling point of the solution. The increased concentration of solute particles in the solution causes a decrease in the vapor pressure of the solvent (water), making it harder for the solvent molecules to escape into the gas phase. This means that more energy is required to bring the solution to its boiling point compared to pure water. In summary, the addition of sodium chloride to water forms a solution with lower freezing point and higher boiling point compared to pure water.
Ajụjụ 16 Ripọtì
When marble is heated to 1473K, another whiter solid is obtained which reacts vigoriously with water to give an alkaline solution. The solution contains
Akọwa Nkọwa
The white solid obtained when marble (calcium carbonate, CaCO3) is heated to 1473K is calcium oxide (CaO), also known as quicklime. When quicklime reacts vigorously with water, it forms calcium hydroxide (Ca(OH)2), which is an alkaline solution. Therefore, the solution obtained from the reaction of quicklime with water contains calcium hydroxide (Ca(OH)2).
Ajụjụ 17 Ripọtì
An organic compound which liberate carbon(iv)oxide from trioxocarbonate(iv) solution is likely to be?
Akọwa Nkọwa
The organic compound that liberates carbon(iv)oxide from trioxocarbonate(iv) solution is CH3COOH (acetic acid). When acetic acid is added to a solution of trioxocarbonate(iv) (carbonate) it reacts to form carbon(iv)oxide gas, water and a salt. The balanced chemical equation for the reaction is: 2CH3COOH + Na2CO3 → CO2 + 2H2O + 2NaCH3COO The carbon(iv)oxide gas is released as bubbles, causing the solution to fizz. Therefore, CH3COOH is the organic compound that liberates carbon(iv)oxide from trioxocarbonate(iv) solution.
Ajụjụ 18 Ripọtì
Crude petroleum is converted to useful products by the process of?
Akọwa Nkọwa
The process of converting crude petroleum into useful products is known as fractional distillation. Crude petroleum is a mixture of different hydrocarbons, and fractional distillation separates these hydrocarbons based on their boiling points. During the process of fractional distillation, crude petroleum is heated to a high temperature, and the resulting vapors are passed through a tower called a fractionating column. This column contains a series of trays, and each tray contains a specific temperature range. As the vapors rise up the column, they cool and condense into liquids on the tray with a temperature that matches their boiling point. The liquids are then collected and further refined into useful products like gasoline, diesel, jet fuel, and heating oil. Fractional distillation is an important process because it allows us to separate and purify the different components of crude petroleum, which have different properties and uses. For example, gasoline has a lower boiling point and is more volatile than diesel fuel, which makes it ideal for use in cars. By separating these components, we can create products that meet specific needs and requirements.
Ajụjụ 19 Ripọtì
Akọwa Nkọwa
Carbon dioxide (CO2) has a linear molecular geometry, with two oxygen atoms bonded to the central carbon atom. Each bond between carbon and oxygen is a double bond, consisting of two pairs of electrons shared between the atoms. Therefore, there are two bonding pairs in each of the carbon-oxygen double bonds, giving a total of four bonding pairs in CO2. The answer is 4.
Ajụjụ 20 Ripọtì
The pollutant usually presents in a city which generates its electricity from coal?
Akọwa Nkọwa
The pollutant that is usually present in a city that generates its electricity from coal is sulfur dioxide (SO2), also known as sulfur(iv)oxide. When coal is burned to generate electricity, sulfur compounds in the coal are released into the air as SO2. This gas can react with other pollutants and atmospheric conditions to form smog, which can be harmful to human health and the environment. Therefore, it is important to reduce the use of coal in electricity generation and promote cleaner and more sustainable energy sources to reduce the levels of SO2 and other harmful pollutants in the air.
Ajụjụ 21 Ripọtì
In order to electroplate spoon with silver, the arrangement of the electrolytic cell is?
Akọwa Nkọwa
Ajụjụ 22 Ripọtì
A quantity of air passed through a weighted amount of alkaline pyrogallol. An increase in the weight of the pyrogallol would result from the absorption of
Akọwa Nkọwa
When air is passed through alkaline pyrogallol, the oxygen in the air is absorbed by the pyrogallol, resulting in an increase in the weight of the pyrogallol. The other gases in air, namely nitrogen, neon, and argon, do not react with pyrogallol under these conditions. Therefore, the answer is oxygen.
Ajụjụ 23 Ripọtì
Chlorine is a common bleaching agent. This is not true with
Akọwa Nkọwa
Chlorine is not a common bleaching agent for wet litmus paper, wet pawpaw leaf, and most wet fabric dyes. It is commonly used as a bleaching agent for printer's ink.
Ajụjụ 24 Ripọtì
The oxidation number of oxygen in BaO2 is
Akọwa Nkọwa
To determine the oxidation number of oxygen in BaO2, we can use the fact that the overall charge of a compound must be zero. Barium (Ba) is a Group 2 element and has an oxidation state of +2. The compound BaO2 has no net charge, so the sum of the oxidation states of all the atoms must be zero. Let x be the oxidation state of oxygen in BaO2. Therefore, we have: (+2) + 2(x) = 0 Solving for x, we get: x = -1 Therefore, the oxidation number of oxygen in BaO2 is -1.
Ajụjụ 25 Ripọtì
Using the metal activity series, the metal that can liberate hydrogen gas from steam is?
Akọwa Nkọwa
The metal that can liberate hydrogen gas from steam is iron. The metal activity series is a list of metals in order of their reactivity, with the most reactive metals at the top and the least reactive metals at the bottom. When a metal is placed in a solution of steam (water vapor), the metal will react with the steam if it is more reactive than hydrogen. In this case, iron is more reactive than hydrogen, so it can displace hydrogen from the steam to form hydrogen gas. This reaction can be represented by the equation: Fe + H2O (steam) → FeO (iron oxide) + H2 (hydrogen gas) So, when steam is passed over iron, hydrogen gas is liberated and iron oxide is formed.
Ajụjụ 26 Ripọtì
The removal of rust from iron by treatment with tetraoxosulphate (vi) acid is based on the
Ajụjụ 27 Ripọtì
Ethene, when passed into concentrated H2SO4, is rapidly absorbed. The product is diluted with water and then warmed to produce
Akọwa Nkọwa
When ethene is passed into concentrated H2SO4, it undergoes electrophilic addition reaction to form ethyl hydrogen sulfate as the product. The reaction mixture is then diluted with water and warmed to produce ethanol as the main product. Therefore, the answer is ethanol.
Ajụjụ 28 Ripọtì
An organic functional group which can likely decolorize ammoniacal silver nitrate is?
Akọwa Nkọwa
The organic functional group that can likely decolorize ammoniacal silver nitrate is an alkyne. When ammoniacal silver nitrate is added to a solution containing an alkyne functional group, a white or yellowish precipitate of silver acetylide is formed. Silver acetylide is a highly explosive compound and is sparingly soluble in water, causing it to appear as a white or yellowish solid precipitate. This reaction is used as a test to detect the presence of an alkyne functional group in an organic compound. In contrast, alkanes, alkenes, and alkanols do not react with ammoniacal silver nitrate, so they cannot decolorize it. Therefore, an organic functional group that can likely decolorize ammoniacal silver nitrate is an alkyne.
Ajụjụ 29 Ripọtì
30 cm3 of oxygen at 10 atmosphere pressure is placed in a 20 dm3 container. Calculate the new pressure if the temperature is kept constant.
Akọwa Nkọwa
Given:
First, convert all volumes to the same units. Since 1 dm3dm3 is 1000 cm3cm3:
𝑉2=20 dm3=20×1000 cm3=20000 cm3V2=20dm3=20×1000cm3=20000cm3
Now, using Boyle's Law:
𝑃1𝑉1=𝑃2𝑉2P1V1=P2V2
Substitute the known values into the equation:
10×30=𝑃2×2000010×30=P2×20000
300=𝑃2×20000300=P2×20000
Solve for 𝑃2P2:
𝑃2=30020000P2=20000300
𝑃2=0.015 atmospheresP2=0.015atmospheres
Therefore, the new pressure if the temperature is kept constant is:
Ajụjụ 31 Ripọtì
Which of the following conducts electricity
Akọwa Nkọwa
Graphite is the option that conducts electricity.
Ajụjụ 32 Ripọtì
A certain volume of gas at 298k is heated such that its volume and pressure are now four times the original values. What is the new temperature?
Akọwa Nkọwa
We can use the ideal gas law to solve this problem, which states that PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant, and T is temperature in kelvin. If the volume and pressure are both increased by a factor of 4, then the new volume V' and new pressure P' are given by: V' = 4V P' = 4P Substituting these values into the ideal gas law, we get: (4P)(4V) = nR(T') Simplifying this equation, we get: 16PV = nRT' Dividing both sides by PV, we get: 16 = nRT' / PV Since n, R, and P are constant, we can simplify this to: 16 = T' / T Solving for T', we get: T' = 16T Therefore, the new temperature is 16 times the original temperature. Substituting T = 298 K, we get: T' = 16 x 298 K = 4768 K So the correct answer is 4768.0K.
Ajụjụ 33 Ripọtì
Which of the following will act as both oxidizing agents and reducing agents?
Akọwa Nkọwa
The oxidizing and reducing properties of a substance depend on its ability to gain or lose electrons. A substance that can gain electrons acts as an oxidizing agent, while a substance that can lose electrons acts as a reducing agent. Among the given options, both Cl2 (chlorine gas) and SO2 (sulfur dioxide) can act as both oxidizing and reducing agents depending on the reaction conditions. - Cl2 can act as an oxidizing agent when it gains electrons to form Cl- ions, and it can act as a reducing agent when it loses electrons to form Cl+ ions. For example, in the reaction Cl2 + 2KBr → 2KCl + Br2, chlorine gas is acting as an oxidizing agent since it is gaining electrons from bromide ions to form bromine gas. However, in the reaction 2Cl- + Cl2 → 2Cl2-, chlorine gas is acting as a reducing agent since it is losing electrons to form chloride ions. - SO2 can act as an oxidizing agent when it gains electrons to form sulfite ions (SO32-), and it can act as a reducing agent when it loses electrons to form sulfur trioxide (SO3). For example, in the reaction SO2 + 2H2S → 3S + 2H2O, sulfur dioxide is acting as a reducing agent since it is losing electrons to form elemental sulfur. However, in the reaction 2SO32- + O2 → 2SO42-, sulfur dioxide is acting as an oxidizing agent since it is gaining electrons to form sulfate ions. H2S (hydrogen sulfide) and NH3 (ammonia) are not likely to act as both oxidizing and reducing agents under normal conditions. H2S tends to act as a reducing agent by donating electrons to oxidizing agents, while NH3 tends to act as a reducing agent by donating electrons to oxidizing agents or as a base by accepting protons.
Ajụjụ 34 Ripọtì
A sample of gas exerts a pressure of 8.2 atm when confined in a 2.93 dm3 container at 20c. The number of moles of gas in the sample is
Ajụjụ 35 Ripọtì
There is a large temperature interval between the melting point and the boiling point of metal because:
Akọwa Nkọwa
The correct answer is: "melting does not break the metallic bond but boiling does." The metallic bond is the force of attraction between metal atoms, which holds them together to form a solid. When a metal is heated, its temperature increases, and at a certain point, the energy provided by the heat is enough to overcome the metallic bond and cause the metal to melt. However, even in the liquid state, the metallic bond remains intact, which is why metals have a very high melting point. On the other hand, when the temperature is further increased, the energy provided by the heat becomes enough to break the metallic bond, and the metal atoms become completely detached from one another. This results in the metal boiling and turning into a gas. Because the metallic bond is much stronger than other types of intermolecular forces, such as van der Waals forces, it requires a lot of energy to break, resulting in a large temperature interval between the melting point and boiling point of metal.
Ajụjụ 36 Ripọtì
Which of the following substances is not a homogeneous mixture?
Akọwa Nkọwa
The substance that is not a homogeneous mixture is flood water. Flood water is typically a mixture of various substances, such as sediment, dirt, debris, and organic matter, that have been carried along by the water. As such, flood water is usually a heterogeneous mixture, meaning that it does not have a uniform composition throughout. In contrast, filtered sea water, soft drinks, and writing ink are all examples of homogeneous mixtures, where the components are evenly distributed and the mixture has a uniform composition throughout.
Ajụjụ 37 Ripọtì
Electrons enter into orbitals in order of increasing energy as exemplified by?
Ajụjụ 38 Ripọtì
In the preparation of salts, the method employed will depend on the?
Akọwa Nkọwa
The method employed in the preparation of salts will depend on the composition of the salt. Different salts have different chemical properties, and the method used to prepare them will depend on these properties. For example, some salts can be easily dissolved in water, while others are not very soluble and may require the use of a different solvent or special conditions to dissolve. The dissociating ability, stability to heat, and precipitating ability of the salt may also play a role in determining the preparation method, but the most important factor is the composition of the salt.
Ajụjụ 39 Ripọtì
A piece of radioactive element has initially 8.0×10^22 atoms. The half life of two days after 16 days the number of atom is
Ajụjụ 40 Ripọtì
Calcium forms complexes with ammonia because
Akọwa Nkọwa
The reason why calcium forms complexes with ammonia is that it has empty d-orbitals.
Ị ga-achọ ịga n'ihu na omume a?