Ana loda....
|
Latsa & Riƙe don Ja Shi Gabaɗaya |
|||
|
Danna nan don rufewa |
|||
Tambaya 1 Rahoto
The device for measuring the angle of dip is
Bayanin Amsa
The device used for measuring the angle of dip is the dip circle.
Let me explain this in simple terms:
The angle of dip, also known as the magnetic inclination, is the angle made by the Earth's magnetic field lines with the horizontal plane. It varies depending on where you are on the Earth's surface. In some places, magnetic field lines are nearly vertical, while in others they are more horizontal.
A dip circle is a specialized scientific instrument used to measure this angle. It usually consists of a magnetic needle that is free to rotate in the vertical plane.
When using a dip circle, you align it so that its plane is parallel to the direction of the Earth's magnetic field. Then, you read the angle at which the magnetic needle stabilizes. This is the angle of dip. The instrument's mechanism allows for accurate measurement of this angle by compensating for any external influences or inclinations.
Tambaya 2 Rahoto
The mechanical advantage of the machine shown above
Bayanin Amsa
Mechanical advantage of a machine = LOADEFFORT
In this case of a wedge, we can consider the dimensions given:
Load distance (height of the machine): 15 cm
Effort distance (movement of the effort): 0.5 cm
M.A = 150.5 = 30.0
Tambaya 3 Rahoto
The web-feet of frogs and toads is basically for
Bayanin Amsa
The web-feet of frogs and toads is primarily for swimming. These webbed feet act like paddles, allowing the frog or toad to move efficiently through the water. When the animal spreads its toes, the webbing provides a larger surface area, which gives better propulsion in the water. This adaptation is essential, as many species of frogs and toads spend a significant amount of their time in aquatic environments where efficient swimming helps them in searching for food, escaping predators, and traveling from one place to another. In essence, the webbed feet are a vital feature for their aquatic lifestyle.
Tambaya 4 Rahoto
In the diagram above, the galvanometer is converted to
Bayanin Amsa
To determine what the galvanometer is converted to in the described scenario, let’s first understand how a galvanometer can be transformed into different measuring devices:
1. Galvanometer to Voltmeter: To convert a galvanometer into a voltmeter, a high resistance (known as a multiplier) is connected in series with the galvanometer. This high resistance ensures that the voltmeter can measure a wide range of voltages without drawing significant current from the circuit.
2. Galvanometer to Ammeter: To convert a galvanometer into an ammeter, a low resistance (called a shunt) is connected in parallel with the galvanometer. This allows the majority of the current to pass through the shunt, enabling the ammeter to measure high currents without damaging the galvanometer.
Since the problem statement does not specify any additional details, a general observation is that a galvanometer is commonly converted into an ammeter using a shunt, especially in basic electrical circuits where current measurement is necessary. Therefore, from the options provided, **the galvanometer is most likely converted to an ammeter**.
**In summary**, if a low resistance is added in parallel with the galvanometer, it becomes an ammeter, while adding a high resistance in series would convert it into a voltmeter. Since the context commonly involves conversion for current measurement, the provided diagram likely represents a galvanometer converted into an ammeter.
Tambaya 5 Rahoto
A mass of gas at 40mmHg is heated from 298k to 348k at constant volume. Cal the pressure exerted by the gas.
Bayanin Amsa
To determine the new pressure exerted by the gas when it is heated, we'll apply **Gay-Lussac's Law**. This law states that at constant volume, the pressure of a given amount of gas is directly proportional to its absolute temperature. Mathematically, it can be expressed as:
P1/T1 = P2/T2
Where:
By rearranging the formula to solve for the final pressure (P2), we get:
P2 = P1 * (T2/T1)
Now, insert the given values into the equation:
P2 = 40 mmHg * (348 K / 298 K)
Perform the calculations:
P2 = 40 mmHg * (348 / 298)
P2 = 40 mmHg * 1.1678
P2 = 46.71 mmHg
So, the new pressure exerted by the gas when it is heated from 298 K to 348 K at constant volume is 46.71 mmHg.
Tambaya 6 Rahoto
An effort of 40N is applied on a machine to lift a mass of 60kg. Determine the mechanical advantage of the machine [ g = 10ms2 ]
Bayanin Amsa
To determine the Mechanical Advantage (MA) of a machine, we use the formula:
MA = Load / Effort
Here, the Load is the weight of the mass being lifted, and the Effort is the force applied on the machine.
First, we need to calculate the Load. The Load is obtained by multiplying the mass of the object by the acceleration due to gravity (g = 10 m/s2).
So, the Load (weight of the mass) is:
Load = Mass × Gravity = 60 kg × 10 m/s2 = 600 N
The Effort given is 40 N.
Now, we can calculate the Mechanical Advantage:
MA = Load / Effort = 600 N / 40 N = 15
Therefore, the Mechanical Advantage of the machine is 15.
Tambaya 7 Rahoto
A hydrometer of mass y kg and volume 2y x 10−5 m3 floats in a fluid with 20% of its volume above the fluid, what is the density of the fluid?
Bayanin Amsa
To find the density of the fluid, we need to apply the principle of floatation, which states that the weight of the fluid displaced by the submerged part of the object is equal to the weight of the object. Let's walk through the steps:
Step 1: Understand the volume submerged
The hydrometer has a total volume of 2y x 10-5 m3. It floats with 20% of its volume above the fluid. Hence, 80% of its volume is submerged in the fluid.
Submerged Volume, Vsub = (0.80) x (2y x 10-5 m3) = 1.6y x 10-5 m3
Step 2: Apply the principle of floatation
The weight of the fluid displaced equals the weight of the hydrometer.
Weight of hydrometer = Mass x Gravity = y kg x g (where g is the acceleration due to gravity). For the purpose of calculations, g can be considered as 9.81 m/s2.
Weight of displaced fluid = Density of fluid (ρfluid) x Submerged Volume x g
According to the principle of floatation:
y x g = ρfluid x 1.6y x 10-5 m3 x g
g is common on both sides and can be canceled out:
y = ρfluid x 1.6y x 10-5
Step 3: Solving for the density of the fluid
ρfluid = y / (1.6y x 10-5)
The y on both numerator and denominator cancels out:
ρfluid = 1 / (1.6 x 10-5)
ρfluid = 6.25 x 104 kg/m3
Thus, the density of the fluid is 6.25 x 104 kg/m3.
Tambaya 8 Rahoto
What is the colour of red rose under a blue light?
Bayanin Amsa
To understand the color of a red rose under a blue light, we need to consider how we perceive color. Objects appear colored because they reflect certain wavelengths of light. A red rose appears red in white light because it reflects red wavelengths and absorbs others.
When you shine blue light on a red rose, the situation changes. A blue light primarily contains blue wavelengths. Since the red rose does not have red wavelengths to reflect anymore, and it cannot reflect blue light (as it absorbs it), the rose will appear to be the absence of any reflected wavelength visible to our eyes.
This means the rose will appear black under blue light, as black is perceived when no visible light is reflected into our eyes. Thus, the color of the red rose under a blue light is black.
Tambaya 9 Rahoto
Calculate the value of electric field intensity due to a charge of 4μC if the force due to the charge is 8N
Bayanin Amsa
To calculate the electric field intensity due to a charge, we need to use the formula:
Electric Field Intensity (E) = Force (F) / Charge (q)
In this problem, we are given that the force (F) is 8 Newtons (N) and the charge (q) is 4 microcoulombs (μC). First, we need to convert the charge from microcoulombs to coulombs:
1 microcoulomb (μC) = 1 x 10-6 coulombs (C)
Therefore, 4 μC = 4 x 10-6 C.
Now we can use the formula to find the electric field intensity:
E = F / q
E = 8 N / (4 x 10-6 C)
E = 8 / 4 x 106
E = 2 x 106
Thus, the value of the electric field intensity is 2 x 106 N/C.
Tambaya 10 Rahoto
The thermometer whose thermometric property is change in volume with temperature is
Bayanin Amsa
A thermometer that relies on the **thermometric property** of **change in volume with temperature** is the **Liquid-in-glass thermometer**.
Here is why:
1. **Construction**: A liquid-in-glass thermometer consists of a **glass tube** that encloses a small reservoir filled with a **thermometric liquid**, typically mercury or colored alcohol.
2. **Principle of Operation**: As the **temperature** changes, the **volume of the liquid** inside the tube changes. When the temperature rises, the liquid **expands** and moves up the tube. Conversely, when the temperature decreases, the liquid **contracts** and moves down the tube.
3. **Scale Calibration**: The thermometer has graduations marked along the tube, allowing the user to read the temperature by observing the level of the liquid against these scale markings.
Therefore, the liquid-in-glass thermometer operates on the principle that the **volume of a liquid changes with temperature**, making it the correct answer.
Tambaya 11 Rahoto
Calculate the upthrust on a spherical ball of volume 4.2 x 10−4 m3 when totally immersed in a liquid of density 1028kgm−3
Bayanin Amsa
Upthrust(Force) = volume of object x density of liquid x g = V x ρ x g
U = 4.2 x 10−4 x 1028 x 10 ≊ 4.3N
Tambaya 12 Rahoto
An accumulator is 90% efficient. If it gives out 2700J of energy while discharging, how much energy does it take in?
Bayanin Amsa
In order to find out how much energy the accumulator takes in, given that it is 90% efficient and gives out 2700J of energy, we can use the formula for efficiency:
Efficiency = (Useful Energy Output / Total Energy Input) × 100%
Given:
Efficiency = 90%
Useful Energy Output = 2700J
We need to calculate the Total Energy Input (how much energy the accumulator takes in). Rearranging the formula to solve for Total Energy Input, we get:
Total Energy Input = Useful Energy Output / Efficiency
Substitute the known values:
Total Energy Input = 2700J / 0.9
Calculate the input:
Total Energy Input = 3000J
Therefore, the accumulator takes in 3000J of energy.
Tambaya 13 Rahoto
Bayanin Amsa
To solve this problem, we need to understand the relationship between pressure, volume, and temperature of a gas. The relevant law here is the **Combined Gas Law**, which is expressed as:
(P1 * V1) / T1 = (P2 * V2) / T2
Where:
In the given problem:
Applying the Combined Gas Law:
(P1 * V1) / 300 = (2 * P1 * V2) / 400
Simplifying this equation:
V1/300 = 2V2/400
Multiply both sides by 400 to clear the fraction:
400 * V1 / 300 = 2 * V2
Which further simplifies to:
(4/3) * V1 = 2 * V2
Dividing both sides by 2:
(2/3) * V1 = V2
This shows that the final volume, V2, is **2/3 of the initial volume, V1**. Therefore, the volume of the gas will **decrease by 1/3**.
Tambaya 14 Rahoto
An air force jet flying with a speed of 335m/s went past an anti-aircraft gun. How far is the aircraft 5s later when the gun was fired?
Bayanin Amsa
To solve this problem, we need to determine how far the aircraft travels in the 5 seconds after it passes the anti-aircraft gun. The problem gives us two key pieces of information:
To find the distance traveled, we use the formula for distance:
Distance = Speed × Time
Plugging in the given values:
Distance = 335 m/s × 5 s
Calculating this, we get:
Distance = 1675 meters
This means the aircraft is 1675 meters away from the point where it passed the anti-aircraft gun after 5 seconds.
Tambaya 15 Rahoto
Bayanin Amsa
To understand when a vapor is considered saturated, it is crucial to consider the rates of two significant processes: evaporation and condensation. **Evaporation** is the process where liquid molecules escape into the vapor phase, and its rate is denoted as **y**. On the other hand, **condensation** is the process where vapor molecules return to the liquid phase, with its rate denoted as **x**.
A vapor is said to be **saturated** when the rate of evaporation of the liquid is equal to the rate of condensation of the vapor. In simpler terms, the number of molecules leaving the liquid to become vapor is exactly equal to the number of molecules returning from the vapor to the liquid.
In mathematical terms, this condition can be described as **x = y**. Under this condition, the system reaches a dynamic equilibrium, and the vapor pressure of the system is at its maximum for the given temperature. At this point, the vapor cannot accommodate any more molecules, and thus, the vapor is in a saturated state.
Tambaya 16 Rahoto
The dimension of young's modulus,E is given by
Bayanin Amsa
Young's modulus, denoted by E, is a measure of the stiffness of a solid material. It is defined as the ratio of stress to strain in a material that is behaving elastically. Stress is the force applied per unit area, and strain is the deformation experienced by the material in response to the applied stress.
Let's break down the dimensions for Young's modulus:
Stress: Stress is defined as force per unit area. Thus, the dimension of stress can be expressed as:
Stress = Force / Area
The dimension of force is given by mass × acceleration, i.e., Force = MLT-2 (where M is mass, L is length, and T is time).
The dimension of area is length × length = L2.
Therefore, the dimension of stress is:
Stress = (MLT-2) / (L2) = ML-1T-2
Strain: Strain is the ratio of the change in length to the original length and is dimensionless because it is a ratio of two lengths.
Thus, the dimension of strain is simply 1 (dimensionless).
Since Young's modulus is the ratio of stress to strain, its dimension is the same as that of stress. Therefore, the dimension of Young’s modulus E is:
ML-1T-2
Tambaya 17 Rahoto
A refrigerator uses 150W. If it is kept on for 336 hours non-stop, what is the energy consumed in KWh?
Bayanin Amsa
To calculate the energy consumption of an appliance, you can use the formula:
Energy (in KWh) = Power (in kW) × Time (in hours)
First, convert the power rating of the refrigerator from watts (W) to kilowatts (kW). Since 1 kW is equal to 1000 W, you can convert 150W to kilowatts by dividing by 1000:
150 W = 0.150 kW
Next, calculate the energy consumed over the period the refrigerator is kept on, which is 336 hours. Use the formula:
Energy = 0.150 kW × 336 hours
Now, perform the multiplication:
Energy = 50.40 kWh
Therefore, when the refrigerator is kept on for 336 hours non-stop, it consumes 50.40 kWh of energy. This is the correct choice.
Tambaya 18 Rahoto
The food nutrient with the highest energy value is
Bayanin Amsa
Fat is the food nutrient with the highest energy value, providing 9 calories per gram, while carbohydrates and proteins provide 4 calories per gram.
Fat is the body's most concentrated source of energy, providing more than twice as much potential energy as carbohydrates or proteins.However, carbohydrates burn fastest in metabolism. Fats are a type of lipid. Lipids are a group of organic compounds that are insoluble in water but soluble in organic solvents. Fats are solid at room temperature, while oils are liquid at room temperature.
Therefore, the correct answer is option C.
Tambaya 19 Rahoto
The unit of impedance is
Bayanin Amsa
The unit of impedance is Ohm, which is symbolized by the Greek letter Ω (Omega). In electrical circuits, impedance (Z) is a measure of opposition that a circuit offers to the passage of electric current when a voltage is applied. It is similar to resistance but extends to alternating currents (AC) and contains the effects of resistance as well as reactance (which accounts for capacitors and inductors).
Just like resistance, the unit of impedance is the ohm because they measure similar concepts; however, impedance also accounts for phase shifts between voltage and current, which are not considered in simple resistance. Ohm's Law is used in AC circuits as Z = V/I, where Z is impedance, V is voltage, and I is current. This relationship shows why the unit of impedance is the same as that of resistance.
Tambaya 20 Rahoto
I
6 X + 6 H2 O → C6 H12 O6 + 6O2
III chlorophyll II IV
Use the diagram above to answer question that follows
The part labelled I is
Bayanin Amsa
The part labelled I in the diagram refers to **sunlight**.
Here's a simple explanation:
The given chemical equation is a representation of **photosynthesis**, a process by which green plants, algae, and some bacteria convert light energy, typically from the sun, into chemical energy stored in glucose (C6H12O6) and release oxygen (O2) as a by-product.
In the context of the equation:
- **6CO2 (Carbon Dioxide) + 6H2O (Water) → C6H12O6 (Glucose) + 6O2 (Oxygen)**
The arrow indicates the transformation that occurs during the process. The **chlorophyll** (labelled in the diagram) indicates the presence of chlorophyll pigments in the chloroplasts of plant cells which are essential for **absorbing sunlight**.
Since **sunlight** is the source of energy that powers this transformation, it is the correct component for the part labelled I in the diagram.
Tambaya 21 Rahoto
The major building block of an organism is...
Bayanin Amsa
The major building block of an organism is Carbon. Let me explain why in a simple yet comprehensive manner:
Carbon is a unique element found in all living organisms. Its importance comes from its ability to form stable bonds with many other elements, including hydrogen, oxygen, nitrogen, phosphorus, and sulfur. This versatility allows carbon to act as a backbone for the building of complex organic molecules, including proteins, nucleic acids (such as DNA and RNA), carbohydrates, and lipids. These molecules are essential for the structure, function, and regulation of the body's tissues and organs.
Here's why Carbon is indispensable:
In summary, Carbon is the primary building block of life due to its unique chemical properties that allow the formation of complex molecules necessary for life's structure and processes.
Tambaya 22 Rahoto
Which of the following is the best as shaving mirror?
Bayanin Amsa
When selecting the best type of mirror for shaving, the key consideration is how the mirror reflects light and creates an image. For the purpose of shaving, it is important to have a mirror that magnifies the face and provides a clear view.
The best option for a shaving mirror is a concave mirror. Here is why:
Other types of mirrors, like convex and plane mirrors, and parabolic mirrors, do not provide the same level of magnification or focused reflecting properties, making them less suitable for shaving purposes.
Tambaya 23 Rahoto
In electrolysis, when same quantity of electricity is passed through different electrolytes, mass of substances deposited is proportional to
Bayanin Amsa
In electrolysis, when the same quantity of electricity is passed through different electrolytes, the mass of substances deposited is proportional to their chemical equivalent. The reason for this lies in Faraday's laws of electrolysis. Faraday's second law states that the amounts of different substances deposited or liberated by the same quantity of electricity are proportional to their chemical equivalents.
Chemical equivalent refers to a measure of a substance's ability to react or be deposited during electrolysis, and it is calculated as the molar mass divided by valency (n). This is why it is sometimes also referred to as equivalent weight.
In essence, for a given charge (equal number of electrons or electricity), a substance with a lower chemical equivalent will deposit more mass because it requires fewer electrons to undergo the chemical change.
Tambaya 24 Rahoto
The dimension of power is
Bayanin Amsa
The dimension of power in physics is expressed in terms of the base units of mass (M), length (L), and time (T). Power is the rate at which work is done or energy is transferred over time, and it has the unit of watt (W) which is equivalent to one joule per second.
To derive the dimension of power:
1. Work has the dimension of energy, which is force applied over a distance. The dimension of work (or energy) is M L2 T-2 because force has the dimension M L T-2 and distance adds another L.
2. Since power is work done per unit time, you would divide the dimension of work by time (T).
Thus, the dimensional formula for power is:
M L2 T-3
Tambaya 25 Rahoto
In a Hare's apparatus, the height of water and a liquid X are 0.3m and 0.5m respectively. The relative density of x is?
Bayanin Amsa
For Hare's apparatus
Relative density = hwhl
Given: height of liquid = 0.5cm, height of water = 0.3cm
Relative density = 0.30.5 = 0.6
Tambaya 26 Rahoto
A wheelbarrow inclined at 60º to the horizontal is pushed with a force of 150N. What is the horizontal component of the applied force
Bayanin Amsa
When you push a wheelbarrow inclined at an angle to the horizontal, the applied force can be divided into two components: a **horizontal component** and a **vertical component**. To find the horizontal component of the force, you need to use the concept of resolving vectors.
The force of 150N is acting at an angle of 60º to the horizontal. The horizontal component of this force can be calculated using the cosine of the angle. The formula to determine the horizontal component \( F_{\text{horizontal}} \) is given by:
Fhorizontal = Fapplied \times \cos(\theta)
Where:
Substitute the values into the formula:
Fhorizontal = 150N \times \cos(60º)
We know that \(\cos(60º)\) equals 0.5.
Therefore:
Fhorizontal = 150N \times 0.5 = 75N
Thus, the **horizontal component** of the applied force is 75N.
Tambaya 27 Rahoto
Find the amount of current required to deposit 0.02kg of metal in a given electrolysis for 120 seconds. [electro chemical equivalent of the metal = 1.3 x 10−7 kgC−1 ]
Bayanin Amsa
To determine the amount of current required, we need to use Faraday's laws of electrolysis. The first law states that the mass of the substance deposited at an electrode is directly proportional to the quantity of electricity (or charge) that passes through the electrolyte.
Here, we have:
According to Faraday's first law of electrolysis, the mass (\( m \)) can be calculated by the formula:
m = z \times I \times t
Where:
Rearranging the formula to solve for current \( I \):
I = \(\frac{m}{z \times t}\)
Substituting the given values into the formula:
I = \(\frac{0.02 \, \text{kg}}{1.3 \times 10^{-7} \, \text{kg/C} \times 120 \, \text{s}}\)
Calculating the denominator:
I = \(\frac{0.02}{1.56 \times 10^{-5}}\)
Solving for \( I \):
I = 1282.05 \, \text{A}
Thus, the appropriate amount of current required to deposit 0.02 kg of metal in 120 seconds is approximately 1.3 x 103 A.
Tambaya 28 Rahoto
If the displacement of a car is proportional to the square of time, then the car is moving with
Bayanin Amsa
When we say that the displacement of a car is proportional to the square of time (d ∝ t²), it indicates a relationship between displacement (d) and time (t). This relationship is characteristic of motion where there is constant acceleration. Essentially, it means that the car is not moving at a constant speed (velocity) but is accelerating at a constant rate.
The mathematical representation of this scenario can be expressed using the formula for displacement under uniform acceleration:
d = ut + (1/2)at².
In this equation:
When the displacement is directly proportional to the square of time (d ∝ t²), it implies that the second term of the equation, which contains the (1/2)at² part, dominates the relationship. Thus, the initial velocity (u) is typically zero or negligible, making the entire displacement dependent on how time squared interacts with acceleration.
Therefore, the car is moving with uniform acceleration.
Tambaya 29 Rahoto
A solid cube of aluminum is 1.5cm on each edge. The density of aluminum is 2700kgm−1 . Find the mass of the cube.
Bayanin Amsa
The mass of an object can be calculated using the formula:
Mass = Density × Volume
In this case, we need to find the mass of a solid cube of aluminum. Given:
First, we need to calculate the volume of the cube. The volume V of a cube with edge length a is given by:
V = a3
Substitute the edge length:
V = (1.5 cm)3 = 1.5 × 1.5 × 1.5 cm3 = 3.375 cm3
Since the density is given in kg/m3, we should convert the volume from cm3 to m3. There are 1,000,000 cm3 in 1 m3, so:
Volume in m3 = 3.375 cm3 × (1 m3/1,000,000 cm3) = 3.375 × 10-6 m3
Now, use the mass formula:
Mass = Density × Volume
Mass = 2700 kg/m3 × 3.375 × 10-6 m3
This equals:
Mass = 9.1125 × 10-3 kg
Convert kg to grams (since 1 kg = 1000 g):
Mass = 9.1125 grams
So, the mass of the cube is approximately 9.1 g. Thus, the correct answer is 9.1 g.
Tambaya 30 Rahoto
Mouth part adapted for piercing and sucking is found in
Bayanin Amsa
The mouthpart adapted for piercing and sucking is found in the mosquito. Mosquitoes have a specialized mouth structure called a proboscis. This proboscis is long and slender, allowing mosquitoes to puncture the skin of their hosts and suck blood. The proboscis is a complex structure that contains several needle-like parts that make the piercing and sucking process efficient and effective.
Tambaya 31 Rahoto
The part of the inner ear that is responsible for hearing is
Bayanin Amsa
The part of the inner ear that is responsible for hearing is the cochlea.
The inner ear is a complex structure, and each of its components serves different functions. Let me break it down further:
Thus, the cochlea is the crucial component of the inner ear responsible for converting sound vibrations into nerve signals, making it central to the process of hearing.
Tambaya 32 Rahoto
In a solar panel, solar beam is concentrated by using
Bayanin Amsa
In a solar panel system, the type of mirror used to concentrate solar beams is the Concave Mirror.
Explanation:
A concave mirror is a type of mirror that curves inward, like the inside of a bowl. This shape is very effective at focusing light. When sunlight hits a concave mirror, the mirror's shape causes the light beams to converge, or come together, at a single point known as the focus. This concentrated light can then be used to generate heat or electricity more efficiently.
Why not the others?
A convex mirror curves outward and disperses light beams rather than concentrating them.
A plane mirror has a flat surface and reflects light at the same angle it receives it, meaning it doesn't concentrate the beams.
A triangular mirror is not typically used in solar applications for concentrating light as its shape is not conducive to focusing beams effectively.
Therefore, a concave mirror is best suited for concentrating solar beams in solar panel systems.
Tambaya 33 Rahoto
Use the diagram above to answer the question that follows
The organism belongs to kingdom
Bayanin Amsa
The diagram is that of the virus. Viruses are obligate parasites, meaning they can't produce their own energy or proteins. They enter the host cell and use the cell's machinery to make their own nucleic acids and proteins. Viruses also use the host cell's lipids and sugar chains to create their membranes and glycoproteins. This parasitic replication can severely damage the host cell, which can lead to disease or cell death. They usually enter your body through your mucous membranes. These include your eyes, nose, mouth, penis, vagina and anus.
Viruses are a unique type of organism that are not plants, animals, or bacteria. They are often classified in their own kingdom. However, for the sake of the question, since most of their attributes and metabolic activities are more of the bacteria, we'll go with option A - Monera
Tambaya 34 Rahoto
A rectifier is a device that changes
Bayanin Amsa
A rectifier is a device that changes alternating current (A.C) to direct current (D.C). Alternating current is the type of electrical current that changes direction periodically, while direct current flows in a single, constant direction.
Rectifiers are essential in numerous electrical devices, particularly those that require a stable and consistent power supply. For example, most electronic devices like mobile phone chargers, laptop adapters, and televisions operate on D.C. power, and rectifiers convert the household A.C. power supply to D.C. so that these devices can function properly.
In summary, a rectifier converts A.C., which is alternating power supply, into D.C., which is a steady flow of electricity in one direction, making it usable for electronic devices and various applications that require direct current.
Tambaya 35 Rahoto
As per Faraday's laws of electromagnetic induction, an e.m.f is induced in a conductor whenever
Bayanin Amsa
According to Faraday's laws of electromagnetic induction, an electromotive force (e.m.f) is induced in a conductor whenever it **cuts magnetic flux**. This means that for an e.m.f to be induced, the conductor must move in such a way that it intersects the magnetic lines of force. It is the relative motion between the conductor and the magnetic field that leads to the change in magnetic flux, resulting in the induction of e.m.f.
Let's explore why this is the correct answer using reasoning:
Therefore, the phenomenon where a conductor cuts magnetic flux is essential for electromagnetic induction as per Faraday's laws.
Tambaya 36 Rahoto
I It wets glass
II It needs to be coloured
III It has a low density
Water is not suitable for use as a thermometric liquid because
Bayanin Amsa
Water is not suitable for use as a thermometric liquid because:
a) It wets glass: This can cause issues with reading the level of the liquid.
b) It needs to be coloured: Water is typically clear, making it difficult to see the level without coloring.
c) It has a low density: This can affect the sensitivity and accuracy of the thermometer.
Tambaya 37 Rahoto
The energy stored in the above capacitor is
Bayanin Amsa
The energy stored in the capacitor = 12 q2C
Where C = 2F, q = 3C
= 12 322 = 94 = 2.25J
Tambaya 38 Rahoto
The moon's acceleration due to gravity is 16 of the earth's value. The weight of a bowling ball on the moon would be
Bayanin Amsa
To determine the weight of a bowling ball on the moon, we need to understand the relationship between weight, gravity, and mass.
Weight is the force exerted by gravity on an object. On Earth, this force depends on the object's mass and the acceleration due to gravity, which is approximately 9.8 m/s². Weight can be calculated using the formula:
Weight = Mass x Gravity
On the moon, the acceleration due to gravity is only 1/6 of Earth’s gravity. This means the gravitational pull on the moon is much weaker compared to the Earth. If we take the Earth's gravity to be 9.8 m/s², the moon's gravity would be:
Moon's Gravity = (9.8 m/s²) x (1/6) ≈ 1.63 m/s²
Given that the weight of an object is directly proportional to the gravitational force, the weight of an object on the moon would be substantially less than its weight on Earth. Thus, the weight of the bowling ball on the moon would be:
Weight on Moon = (Mass) x (1.63 m/s²) = 1/6 of its weight on Earth
Therefore, the weight of a bowling ball on the moon is 1/6 of its weight on Earth.
Tambaya 39 Rahoto
When thermal energy in a solid is increased, the change in state is called
Bayanin Amsa
When the thermal energy in a solid is increased, the solid particles gain energy and begin to vibrate more vigorously. As the temperature rises, these particles eventually have enough energy to overcome the forces holding them in their fixed positions. This leads to a change of state from a solid to a liquid. This process is known as melting.
To further understand this, imagine an ice cube. As it absorbs heat, it gains energy, and the ice (which is a solid) starts to turn into water (which is a liquid). This transition is what we refer to as melting.
Thus, the term that describes this change of state, when a solid is heated and turns into a liquid, is melting.
Tambaya 40 Rahoto
An electron falls from an energy level of -5.44eV to another energy level, E. If the emitted photon is of wavelength 5.68 x 10−6 m, calculate the energy change. [ Plank's constant = 6.63 x 10−34 Js, emitted radiation speed = 3.0 x 108 ms−1 ]
Bayanin Amsa
To find the energy change when an electron falls from one energy level to another, we need to calculate the energy of the emitted photon. This energy can be found using the formula:
E = hν or E = hc/λ
where:
Substitute these values into the equation:
E = (6.63 x 10-34 Js) * (3.0 x 108 ms-1) / (5.68 x 10-6 m)
First, calculate the numerator:
(6.63 x 10-34) * (3.0 x 108) = 1.989 x 10-25 J·m
Then, divide by the wavelength:
E = 1.989 x 10-25 J·m / 5.68 x 10-6 m = 3.5 x 10-20 J
Therefore, the energy change when the electron falls is approximately 3.5 x 10-20 J.
Checking the options provided, the closest value is 3.49 x 10-20 J.
Za ka so ka ci gaba da wannan aikin?