Ana loda....
|
Latsa & Riƙe don Ja Shi Gabaɗaya |
|||
|
Danna nan don rufewa |
|||
Tambaya 2 Rahoto
When thermal energy in a solid is increased, the change in state is called
Bayanin Amsa
When the thermal energy in a solid is increased, the solid particles gain energy and begin to vibrate more vigorously. As the temperature rises, these particles eventually have enough energy to overcome the forces holding them in their fixed positions. This leads to a change of state from a solid to a liquid. This process is known as melting.
To further understand this, imagine an ice cube. As it absorbs heat, it gains energy, and the ice (which is a solid) starts to turn into water (which is a liquid). This transition is what we refer to as melting.
Thus, the term that describes this change of state, when a solid is heated and turns into a liquid, is melting.
Tambaya 3 Rahoto
In voltage measurement, the potentiometer is preferred to voltmeter because it
Bayanin Amsa
In voltage measurement, a **potentiometer is preferred to a voltmeter** primarily because it **consumes negligible current**. Let me explain this in simpler terms:
A **voltmeter** is an instrument used to measure the potential difference (voltage) across two points in an electrical circuit. However, when a voltmeter is connected, it draws a small amount of current from the circuit to make the measurement, which can slightly alter the voltage being measured. This is particularly an issue in high-resistance circuits where even a small current draw can significantly affect the measurement.
On the other hand, a **potentiometer** is a device designed to measure voltage by comparing it with a known reference voltage without drawing current from the circuit under test. It comes into balance at a point where no current flows through it, ensuring that the measurement is not influenced by the potentiometer itself. This makes it a non-invasive method of measuring voltage, which is particularly useful for precise measurements in sensitive circuits.
Here’s a brief explanation about why the other options listed are less relevant:
Therefore, the key advantage of the potentiometer is its **ability to measure voltage without altering the circuit**, which stems from its negligible current consumption. This **ensures more accurate and reliable measurements** in many applications.
Tambaya 4 Rahoto
Which of the following structures enables the exchange of gases in insects?
Bayanin Amsa
In insects, the structure responsible for the exchange of gases is the tracheae. Insects have a unique respiratory system where air is taken in through tiny openings called spiracles located on the surface of their body.
The air then travels directly into a network of tubes known as the tracheae. The tracheae branch out extensively throughout the insect's body, allowing oxygen to diffuse directly to the insect's tissues and cells. The carbon dioxide produced in the cells travels back through the tracheae and exits the body through the spiracles.
Other structures like the skin, Malpighian tubules, and flame cells have different functions:
Thus, the correct answer is the tracheae as they specifically enable the exchange of gases in insects.
Tambaya 5 Rahoto
Find the value of a capacitor with voltage 5V and 30C.
Bayanin Amsa
To find the value of the capacitance, we need to use the formula for capacitance:
Capacitance (C) = Charge (Q) / Voltage (V)
In this problem, the charge (Q) is given as 30 Coulombs (C) and the voltage (V) is 5 Volts (V). We can plug these values into the formula:
C = 30 C / 5 V
Calculating the above expression gives:
C = 6 Farads (F)
Therefore, the value of the capacitor is 6 Farads.
Tambaya 6 Rahoto
Pilots uses aneroid barometer to know the height above sea level because
Bayanin Amsa
Aneroid barometers are compact and lightweight, making them suitable for use in aircraft where space and weight are critical considerations. They provide a reliable measurement of altitude based on changes in atmospheric pressure.
Tambaya 7 Rahoto
An example of a non-rechargeable cell is
Bayanin Amsa
A non-rechargeable cell, commonly known as a primary cell, is a type of chemical battery that is designed to be used once until the chemical reactions that produce electricity are exhausted. After this point, the cell cannot be reversed or recharged.
In the given examples, the dry leclanche cell is a well-known example of a non-rechargeable cell. It is commonly used in everyday devices like remote controls, wall clocks, and torches. This cell type utilizes zinc and manganese dioxide as electrodes and relies on a moist paste of ammonium chloride for the electrolyte.
The other examples, such as nickel iron, mercury cadmium, and lead-acid, involve rechargeable cells (secondary cells) that are specifically designed to endure multiple charges and discharges throughout their useful life. Thus, unlike the dry leclanche cell, these can be recharged after use.
Therefore, the dry leclanche cell is an ideal example of a non-rechargeable cell because it can only be used once. After depletion, it cannot be recharged or reused.
Tambaya 8 Rahoto
Calculate the value of electric field intensity due to a charge of 4μC if the force due to the charge is 8N
Bayanin Amsa
To calculate the electric field intensity due to a charge, we need to use the formula:
Electric Field Intensity (E) = Force (F) / Charge (q)
In this problem, we are given that the force (F) is 8 Newtons (N) and the charge (q) is 4 microcoulombs (μC). First, we need to convert the charge from microcoulombs to coulombs:
1 microcoulomb (μC) = 1 x 10-6 coulombs (C)
Therefore, 4 μC = 4 x 10-6 C.
Now we can use the formula to find the electric field intensity:
E = F / q
E = 8 N / (4 x 10-6 C)
E = 8 / 4 x 106
E = 2 x 106
Thus, the value of the electric field intensity is 2 x 106 N/C.
Tambaya 9 Rahoto
The charge of magnitude 1.6 x 10 −19 C is placed in a uniform electric field of intensity 1200Vm−1 . Calculate its acceleration, if the mass of the charge is 9.1 x 10−31 kg
Bayanin Amsa
To calculate the acceleration of a charge in an electric field, we start by determining the force acting on the charge. The force \( F \) experienced by a charge \( q \) in a uniform electric field \( E \) is given by the equation:
F = q * E
We are given:
Substituting these values into the equation for force:
F = 1.6 x 10-19 C * 1200 V/m
This results in:
F = 1.92 x 10-16 N
Next, we use Newton’s second law of motion to find the acceleration \( a \) of the charge. This law is given as:
F = m * a
Rearranging for \( a \), we have:
a = F / m
We know:
Substituting these values in the equation for acceleration:
a = \(\frac{1.92 x 10^{-16} N}{9.1 x 10^{-31} kg}\)
Calculating the above expression gives:
a ≈ 2.11 x 1014 ms-2
Therefore, the acceleration of the charge is approximately 2.11 x 1014 ms-2.
Tambaya 10 Rahoto
A load of 300N is to be lifted by a machine with a velocity ratio of 2 and an efficiency of 60%. What effort will be applied to lift the load?
Bayanin Amsa
To determine the effort needed to lift a load using a machine, we first need to understand some key concepts: **Load**, **Effort**, **Velocity Ratio** (VR), and **Efficiency**.
1. **Load** is the force or weight that needs to be lifted by the machine. In this case, the load is 300N.
2. **Velocity Ratio (VR)** is the ratio of the distance moved by the effort to the distance moved by the load. Given here as 2.
3. **Efficiency** of a machine is expressed as a percentage and is the ratio of the useful work output to the input work done by the effort. Here, the efficiency is 60% or 0.60 as a decimal.
The formula to calculate the **Effort** is derived from the relationship between these factors:
\[ \text{Efficiency} = \frac{\text{Mechanical Advantage (MA)}}{\text{Velocity Ratio (VR)}} \]
Where:
\[ \text{Mechanical Advantage (MA)} = \frac{\text{Load}}{\text{Effort}} \]
From the above, we have:
\[ \text{MA} = \text{VR} \times \text{Efficiency} \]
Replacing with the given values:
\[ MA = 2 \times 0.60 = 1.2 \]
Now, calculate the **Effort** using the relation:
\[ \text{Effort} = \frac{\text{Load}}{\text{MA}} \]
\[ \text{Effort} = \frac{300N}{1.2} = 250N \]
Therefore, the **Effort** needed to lift the load is 250N.
Tambaya 11 Rahoto
Find the amount of current required to deposit 0.02kg of metal in a given electrolysis for 120 seconds. [electro chemical equivalent of the metal = 1.3 x 10−7 kgC−1 ]
Bayanin Amsa
To determine the amount of current required, we need to use Faraday's laws of electrolysis. The first law states that the mass of the substance deposited at an electrode is directly proportional to the quantity of electricity (or charge) that passes through the electrolyte.
Here, we have:
According to Faraday's first law of electrolysis, the mass (\( m \)) can be calculated by the formula:
m = z \times I \times t
Where:
Rearranging the formula to solve for current \( I \):
I = \(\frac{m}{z \times t}\)
Substituting the given values into the formula:
I = \(\frac{0.02 \, \text{kg}}{1.3 \times 10^{-7} \, \text{kg/C} \times 120 \, \text{s}}\)
Calculating the denominator:
I = \(\frac{0.02}{1.56 \times 10^{-5}}\)
Solving for \( I \):
I = 1282.05 \, \text{A}
Thus, the appropriate amount of current required to deposit 0.02 kg of metal in 120 seconds is approximately 1.3 x 103 A.
Tambaya 12 Rahoto
Bayanin Amsa
When you insert a sheet of an insulating material between the plates of an air capacitor, the capacitance will increase.
Here's why:
C = ε₀ * (εr) * (A/d)
Therefore, inserting an insulating material as a dielectric enhances the capacitor's ability to store charge, ultimately resulting in an increase in capacitance.
Tambaya 13 Rahoto
A monochromatic light is one that
Bayanin Amsa
A monochromatic light is one that has a single wavelength or color. This means that it consists of light waves that all have the same frequency, resulting in a uniform appearance without any variation.
Tambaya 14 Rahoto
Use the diagram above to answer the question that follows
The organism belongs to kingdom
Bayanin Amsa
The diagram is that of the virus. Viruses are obligate parasites, meaning they can't produce their own energy or proteins. They enter the host cell and use the cell's machinery to make their own nucleic acids and proteins. Viruses also use the host cell's lipids and sugar chains to create their membranes and glycoproteins. This parasitic replication can severely damage the host cell, which can lead to disease or cell death. They usually enter your body through your mucous membranes. These include your eyes, nose, mouth, penis, vagina and anus.
Viruses are a unique type of organism that are not plants, animals, or bacteria. They are often classified in their own kingdom. However, for the sake of the question, since most of their attributes and metabolic activities are more of the bacteria, we'll go with option A - Monera
Tambaya 15 Rahoto
As per Faraday's laws of electromagnetic induction, an e.m.f is induced in a conductor whenever
Bayanin Amsa
According to Faraday's laws of electromagnetic induction, an electromotive force (e.m.f) is induced in a conductor whenever it **cuts magnetic flux**. This means that for an e.m.f to be induced, the conductor must move in such a way that it intersects the magnetic lines of force. It is the relative motion between the conductor and the magnetic field that leads to the change in magnetic flux, resulting in the induction of e.m.f.
Let's explore why this is the correct answer using reasoning:
Therefore, the phenomenon where a conductor cuts magnetic flux is essential for electromagnetic induction as per Faraday's laws.
Tambaya 16 Rahoto
The dimension of power is
Bayanin Amsa
The dimension of power in physics is expressed in terms of the base units of mass (M), length (L), and time (T). Power is the rate at which work is done or energy is transferred over time, and it has the unit of watt (W) which is equivalent to one joule per second.
To derive the dimension of power:
1. Work has the dimension of energy, which is force applied over a distance. The dimension of work (or energy) is M L2 T-2 because force has the dimension M L T-2 and distance adds another L.
2. Since power is work done per unit time, you would divide the dimension of work by time (T).
Thus, the dimensional formula for power is:
M L2 T-3
Tambaya 17 Rahoto
Photometer is used to measure
Bayanin Amsa
A photometer is an instrument designed to measure the intensity of light. It is used to determine how much light is received over a particular area. Photometers are vital in various fields such as photography, astronomy, and laboratory science for ensuring that light levels are appropriate for specific applications.
The device operates by assessing the brightness or illumination coming from a light source and comparing it with a standard light. The measurement can be displayed in different units such as lumens or lux, depending on the context of the measurement.
While photometers are focused on the intensity of light, they do not measure kinetic energy of liberated electrons, the frequency of light, or the wavelength of light. These quantities are measured using other specialized instruments, such as spectrometers or frequency analyzers.
Tambaya 18 Rahoto
The capacitance of a capacitor, C, is inversely proportional to
Bayanin Amsa
The capacitance of a capacitor is primarily determined by three key factors: the area of the plates, the distance between the plates, and the dielectric material used between the plates.
Capacitance (C) is calculated using the formula:
\(C = \frac{\varepsilon A}{d}\)
Where:
Let's analyze the relationship:
In summary, the capacitance of a capacitor is inversely proportional to the distance between the plates. Hence, you increase capacitance by decreasing the distance between the plates.
Tambaya 19 Rahoto
The process by which plants loss water to the atmosphere is
Bayanin Amsa
The process by which plants lose water to the atmosphere is called transpiration.
Transpiration is a fundamental process in the life of a plant. During this process, water is absorbed by the roots from the soil and is then transported through the xylem vessels in the stem and leaves. Once in the leaves, water evaporates into the atmosphere from the surface of tiny pores known as stomata.
Here's a simple breakdown of how transpiration works:
Transpiration is crucial for a number of reasons:
Understanding transpiration is essential in fields like agriculture, where managing water resources efficiently can significantly impact plant growth and crop yield.
Tambaya 20 Rahoto
A force of 10N extends a spring of natural length 1m by 0.02m, calculate the length of the spring when the applied force is 40N.
Bayanin Amsa
To solve this problem, we will use Hooke's Law. Hooke's Law states that the force needed to extend or compress a spring by some distance is proportional to that distance. Mathematically, it is represented as:
F = k * x
where:
Firstly, we need to find the spring constant k. We know that a force of 10N extends the spring by 0.02m. Therefore, using Hooke's Law:
10N = k * 0.02m
From this, we can solve for k:
k = 10N / 0.02m = 500N/m
Now that we have determined the spring constant, let's calculate the extension caused by a force of 40N:
Using Hooke's Law again:
F = k * x
40N = 500N/m * x
Solving for x:
x = 40N / 500N/m = 0.08m
This means that the spring is extended by 0.08m when a force of 40N is applied. Therefore, the length of the spring (natural length plus extension) becomes:
1.00m + 0.08m = 1.08m
Thus, the **length** of the spring when the applied force is 40N is 1.08m.
Tambaya 21 Rahoto
If the velocity ratio of a machine is 4, what does it mean?
Bayanin Amsa
The velocity ratio of a machine is a concept used to explain how much the machine is expected to amplify the input motion. If the velocity ratio of a machine is 4, it means that the distance moved by the effort is 4 times greater than the distance moved by the load.
To understand this concept better, consider what a machine does: it allows you to apply a small effort over a longer distance to move a heavy load over a shorter distance. In this scenario, if the velocity ratio is 4, then for every 4 meters (or units of distance) you exert effort, the load will move 1 meter (or unit of distance).
Tambaya 22 Rahoto
The average translational kinetic energy of gas molecules depends on
Bayanin Amsa
The average translational kinetic energy of gas molecules is directly related to the temperature of the gas. This relationship is based on the principles of kinetic molecular theory, which explains the behavior of gas molecules in terms of their motion.
Let's break this down simply:
1. Temperature and Kinetic Energy:
The average translational kinetic energy of gas molecules is given by the equation:
\( KE_{avg} = \frac{3}{2} k_B T \)
where \( KE_{avg} \) is the average translational kinetic energy, \( k_B \) is the Boltzmann constant, and \( T \) is the absolute temperature in Kelvin. This formula shows that the kinetic energy is directly proportional to the temperature.
2. What This Means:
As the temperature of a gas increases, the molecules move faster, which increases their translational kinetic energy. Conversely, as the temperature decreases, the molecules slow down, resulting in lower kinetic energy.
It is important to note that this relation is independent of the pressure and the number of moles of the gas. While pressure and the number of moles do affect the overall behavior of a gas, they do not directly influence the average translational kinetic energy of individual molecules.
Therefore, the correct explanation is that the average translational kinetic energy of gas molecules depends on temperature only.
Tambaya 23 Rahoto
The device for measuring the angle of dip is
Bayanin Amsa
The device used for measuring the angle of dip is the dip circle.
Let me explain this in simple terms:
The angle of dip, also known as the magnetic inclination, is the angle made by the Earth's magnetic field lines with the horizontal plane. It varies depending on where you are on the Earth's surface. In some places, magnetic field lines are nearly vertical, while in others they are more horizontal.
A dip circle is a specialized scientific instrument used to measure this angle. It usually consists of a magnetic needle that is free to rotate in the vertical plane.
When using a dip circle, you align it so that its plane is parallel to the direction of the Earth's magnetic field. Then, you read the angle at which the magnetic needle stabilizes. This is the angle of dip. The instrument's mechanism allows for accurate measurement of this angle by compensating for any external influences or inclinations.
Tambaya 24 Rahoto
What is the inductance reactance of a coil of 7H when connected to a 50Hz a.c circuit?
Bayanin Amsa
To determine the inductive reactance of a coil, we use the formula:
Inductive Reactance (XL) = 2πfL
Where:
Given:
Substituting the given values into the formula:
XL = 2 × π × 50 × 7
Calculating this:
XL = 2 × 3.14159 × 50 × 7
XL ≈ 2 × 3.14159 × 350
XL ≈ 2 × 1099.557
XL ≈ 2199.114
Therefore, the inductive reactance of the coil is approximately 2200Ω.
Tambaya 25 Rahoto
The unit of impedance is
Bayanin Amsa
The unit of impedance is Ohm, which is symbolized by the Greek letter Ω (Omega). In electrical circuits, impedance (Z) is a measure of opposition that a circuit offers to the passage of electric current when a voltage is applied. It is similar to resistance but extends to alternating currents (AC) and contains the effects of resistance as well as reactance (which accounts for capacitors and inductors).
Just like resistance, the unit of impedance is the ohm because they measure similar concepts; however, impedance also accounts for phase shifts between voltage and current, which are not considered in simple resistance. Ohm's Law is used in AC circuits as Z = V/I, where Z is impedance, V is voltage, and I is current. This relationship shows why the unit of impedance is the same as that of resistance.
Tambaya 26 Rahoto
I
6 X + 6 H2 O → C6 H12 O6 + 6O2
III chlorophyll II IV
Use the diagram above to answer question that follows
The part labelled I is
Bayanin Amsa
The part labelled I in the diagram refers to **sunlight**.
Here's a simple explanation:
The given chemical equation is a representation of **photosynthesis**, a process by which green plants, algae, and some bacteria convert light energy, typically from the sun, into chemical energy stored in glucose (C6H12O6) and release oxygen (O2) as a by-product.
In the context of the equation:
- **6CO2 (Carbon Dioxide) + 6H2O (Water) → C6H12O6 (Glucose) + 6O2 (Oxygen)**
The arrow indicates the transformation that occurs during the process. The **chlorophyll** (labelled in the diagram) indicates the presence of chlorophyll pigments in the chloroplasts of plant cells which are essential for **absorbing sunlight**.
Since **sunlight** is the source of energy that powers this transformation, it is the correct component for the part labelled I in the diagram.
Tambaya 27 Rahoto
An object is placed 25cm in front of a convex mirror has its image formed 5cm behind the mirror. what is the focal length of the convex mirror
Bayanin Amsa
Object distance (u) = -25 cm (negative because the object is in front of the mirror)
Image distance (v) = +5 cm (positive because the image is behind the convex mirror)
Using 1f = 1u + 1v
1f = 1−25 + 15
f = 254 = 6.250cm.
Tambaya 28 Rahoto
Using the diagram above, the effective force pushing it forward at an angle 60º is
Bayanin Amsa
To determine the effective force pushing the object forward at an angle of 60º, we need to resolve the given force into its components. Specifically, we are interested in the horizontal component of the force, as this is the part that effectively pushes the object forward.
The general formula to calculate the horizontal component of a force (Fx) when the force is applied at an angle (θ) is:
Fx = F * cos(θ)
Where:
Assuming the magnitude of the force applied (F) is 50N, then the effective forward force can be calculated as follows:
Fx = 50N * cos(60º)
Using the trigonometric value:
cos(60º) = 0.5
Therefore:
Fx = 50N * 0.5
Fx = 25N
Hence, the effective force pushing it forward at an angle of 60º is 25.00N. Therefore, the correct answer is 25.00N.
Tambaya 29 Rahoto
The moon's acceleration due to gravity is 16 of the earth's value. The weight of a bowling ball on the moon would be
Bayanin Amsa
To determine the weight of a bowling ball on the moon, we need to understand the relationship between weight, gravity, and mass.
Weight is the force exerted by gravity on an object. On Earth, this force depends on the object's mass and the acceleration due to gravity, which is approximately 9.8 m/s². Weight can be calculated using the formula:
Weight = Mass x Gravity
On the moon, the acceleration due to gravity is only 1/6 of Earth’s gravity. This means the gravitational pull on the moon is much weaker compared to the Earth. If we take the Earth's gravity to be 9.8 m/s², the moon's gravity would be:
Moon's Gravity = (9.8 m/s²) x (1/6) ≈ 1.63 m/s²
Given that the weight of an object is directly proportional to the gravitational force, the weight of an object on the moon would be substantially less than its weight on Earth. Thus, the weight of the bowling ball on the moon would be:
Weight on Moon = (Mass) x (1.63 m/s²) = 1/6 of its weight on Earth
Therefore, the weight of a bowling ball on the moon is 1/6 of its weight on Earth.
Tambaya 30 Rahoto
The energy in a moving car is an example of
Bayanin Amsa
The energy in a moving car is an example of kinetic energy.
To explain simply, **energy** is the ability to do **work** or cause **change**. There are different forms of energy, and **kinetic energy** is one of them. It is defined as the energy possessed by an object due to its motion.
When a car is moving, it possesses **kinetic energy** because its components are in **motion**. This motion energy allows the car to do tasks, such as transporting people or goods from one place to another. The faster the car moves, the greater its **kinetic energy**, and thus it can make a larger impact or do more work.
In contrast, energy forms like **mechanical energy** is a combination of both kinetic and potential energy; **electrical energy** is associated with electrical charge movement, while **potential energy** is related to the position or condition of an object (like a car parked on a hill). Therefore, the specific type of energy from a moving car is **kinetic energy**.
Tambaya 31 Rahoto
Under which conditions is work done
Bayanin Amsa
In physics, the concept of work is defined as the process of energy transfer that occurs when a force makes an object move. The conditions for work to be done are:
Now, let's evaluate each scenario:
A man supports a heavy load on his head with hands: In this case, although the man is applying a force upward to support the load, the load does not move in the direction of the force he is exerting (upward). Hence, no work is done.
A woman holds a pot of water: Similar to the first scenario, the woman applies an upward force to hold the pot. However, the pot remains stationary, and there is no movement in the direction of the force. Thus, no work is done.
A boy climbs onto a table: Here, as the boy climbs, he applies a force to move himself upward onto the table. The movement is in the direction of the upward force he is applying. Therefore, work is done.
A man pushes against a stationary petrol tanker: In this scenario, although the man is applying a force to the tanker, it does not move. Because there is no movement in the direction of the force, no work is done.
Tambaya 32 Rahoto
The stress experienced by a wire of diameter
Bayanin Amsa
Stress is defined as the force applied per unit area. In the context of a wire being loaded by a weight, the weight acts as the force exerted, and the cross-sectional area of the wire is the area over which this force is distributed.
Force (F): This is given by the weight, which is y2 N.
Cross-sectional Area (A): For a wire with a diameter, the area can be calculated using the formula for the area of a circle: A = πr2, where r is the radius of the wire.
Given the diameter of the wire as yπ meters, the radius (r) is half of the diameter:
r = (yπ)/2
So, the area (A) is:
A = π[(yπ)/2]2
Simplifying the area:
A = π(y2π2/4)
A = y2π3/4
Stress (σ) is given by the formula:
σ = F/A
Substituting the given weight (force) and the calculated area:
σ = (y2) / (y2π3/4)
By simplifying the expression:
σ = (4y2) / (y2π3)
Cancel out y2 from numerator and denominator:
σ = 4/π2 Nm−2
Thus, the correct stress experienced by the wire is 4π Nm−2, as provided in one of the options. The explanation shows clearly how the force and area are used to derive the stress experienced by the wire.
Tambaya 33 Rahoto
Calculate the upthrust on a spherical ball of volume 4.2 x 10−4 m3 when totally immersed in a liquid of density 1028kgm−3
Bayanin Amsa
Upthrust(Force) = volume of object x density of liquid x g = V x ρ x g
U = 4.2 x 10−4 x 1028 x 10 ≊ 4.3N
Tambaya 34 Rahoto
The food nutrient with the highest energy value is
Bayanin Amsa
Fat is the food nutrient with the highest energy value, providing 9 calories per gram, while carbohydrates and proteins provide 4 calories per gram.
Fat is the body's most concentrated source of energy, providing more than twice as much potential energy as carbohydrates or proteins.However, carbohydrates burn fastest in metabolism. Fats are a type of lipid. Lipids are a group of organic compounds that are insoluble in water but soluble in organic solvents. Fats are solid at room temperature, while oils are liquid at room temperature.
Therefore, the correct answer is option C.
Tambaya 35 Rahoto
The diaphragm in the camera is similar to what part of the eyes?
Bayanin Amsa
The diaphragm in a camera is similar to the iris in the human eye.
Here's a simple explanation:
In summary, the iris acts like a natural diaphragm, regulating the light that passes through the eye, much like the diaphragm does in a camera.
Tambaya 36 Rahoto
Convert 60ºC to degree Fahrenheit
Bayanin Amsa
To convert temperatures from Celsius to Fahrenheit, we use the formula:
F = (C × 9/5) + 32
Here, F represents the temperature in Fahrenheit, and C represents the temperature in Celsius.
Let's use this formula to convert 60ºC to Fahrenheit:
F = (60 × 9/5) + 32
First, multiply 60 by 9/5:
60 × 9/5 = 108
Next, add 32 to 108:
108 + 32 = 140
Therefore, 60ºC is equal to 140ºF.
Tambaya 37 Rahoto
An effort of 40N is applied on a machine to lift a mass of 60kg. Determine the mechanical advantage of the machine [ g = 10ms2 ]
Bayanin Amsa
To determine the Mechanical Advantage (MA) of a machine, we use the formula:
MA = Load / Effort
Here, the Load is the weight of the mass being lifted, and the Effort is the force applied on the machine.
First, we need to calculate the Load. The Load is obtained by multiplying the mass of the object by the acceleration due to gravity (g = 10 m/s2).
So, the Load (weight of the mass) is:
Load = Mass × Gravity = 60 kg × 10 m/s2 = 600 N
The Effort given is 40 N.
Now, we can calculate the Mechanical Advantage:
MA = Load / Effort = 600 N / 40 N = 15
Therefore, the Mechanical Advantage of the machine is 15.
Tambaya 38 Rahoto
Bayanin Amsa
To understand when a vapor is considered saturated, it is crucial to consider the rates of two significant processes: evaporation and condensation. **Evaporation** is the process where liquid molecules escape into the vapor phase, and its rate is denoted as **y**. On the other hand, **condensation** is the process where vapor molecules return to the liquid phase, with its rate denoted as **x**.
A vapor is said to be **saturated** when the rate of evaporation of the liquid is equal to the rate of condensation of the vapor. In simpler terms, the number of molecules leaving the liquid to become vapor is exactly equal to the number of molecules returning from the vapor to the liquid.
In mathematical terms, this condition can be described as **x = y**. Under this condition, the system reaches a dynamic equilibrium, and the vapor pressure of the system is at its maximum for the given temperature. At this point, the vapor cannot accommodate any more molecules, and thus, the vapor is in a saturated state.
Tambaya 39 Rahoto
A body is pulled on a horizontal surface with a rope inclined at 30º to the vertical. If the effective force pulling the body along the horizontal surface is 15N, calculate the tension on the rope.
Bayanin Amsa
In this problem, the tension in the rope results in a force that acts to pull the body along the horizontal surface. The rope is inclined at 30º to the vertical, which means it makes an angle of 60º with the horizontal since the total angle between vertical and horizontal is 90º.
To find the tension in the rope, we first understand that the component of the tension force acting along the horizontal surface is given by the formula:
F_horizontal = Tension * cos(θ)
Where:
Given that F_horizontal = 15N, we substitute into the equation:
15N = Tension * cos(60º)
We know that cos(60º) = 0.5, therefore:
15N = Tension * 0.5
To find the Tension, divide both sides of the equation by 0.5:
Tension = 15N / 0.5
Tension = 30N
Therefore, the tension in the rope is 30N.
Tambaya 40 Rahoto
Which of the following is the best as shaving mirror?
Bayanin Amsa
When selecting the best type of mirror for shaving, the key consideration is how the mirror reflects light and creates an image. For the purpose of shaving, it is important to have a mirror that magnifies the face and provides a clear view.
The best option for a shaving mirror is a concave mirror. Here is why:
Other types of mirrors, like convex and plane mirrors, and parabolic mirrors, do not provide the same level of magnification or focused reflecting properties, making them less suitable for shaving purposes.
Za ka so ka ci gaba da wannan aikin?