Chargement....
|
Appuyez et maintenez pour déplacer |
|||
|
Cliquez ici pour fermer |
|||
Question 1 Rapport
Kerosene is used as solvent for
Détails de la réponse
Kerosene is commonly used as a solvent for paints. Let me explain why in a simple way:
Kerosene is a type of fuel that is composed of hydrocarbons, which are molecules made up of hydrogen and carbon atoms. These hydrocarbons give kerosene the ability to dissolve other similar substances.
Paints often contain oils and other hydrocarbon-based compounds. Since kerosene is also hydrocarbon-based, it can effectively dissolve and thin these compounds. This makes it suitable for use as a solvent in paints, allowing the paint to be thinned or cleaned up after use. This property makes kerosene a good choice for cleaning brushes and other painting tools or for dissolving dried paint.
On the other hand, sulphur, gums, and fats are typically not dissolved effectively by kerosene because of their different chemical properties. Therefore, kerosene as a solvent is primarily useful in the context of working with paints and similar hydrocarbon-based materials.
Question 2 Rapport
The element which can combine with oxygen to form an acid anhydride of the form XO2 is
Détails de la réponse
An Acid anhydride can be defined as a non-metal oxide which forms an acidic solution when reacted with water.
Sulphur is the element that can combine with oxygen to form an acid anhydride of the form XO2 .
An acid oxide is a compound that forms an acid when it reacts with water. Non-metals in groups 4–7 form acidic oxides.
Question 3 Rapport
Which of the following is used in forming slag in the blast furnace for the extraction of iron?
Détails de la réponse
In the process of extracting iron in a blast furnace, CaCO3, or calcium carbonate, plays a crucial role in forming slag. Here is a simple and comprehensive explanation of how it works:
1. Role of Calcium Carbonate (CaCO3):
Calcium carbonate is commonly used as a flux in the blast furnace. When it is introduced into the furnace, it undergoes a decomposition reaction due to the high temperatures, breaking down into calcium oxide (CaO) and carbon dioxide (CO2).
2. Formation of Slag:
The calcium oxide (CaO) produced then reacts with silicon dioxide (SiO2) present in the iron ore. This reaction forms a liquid slag of calcium silicate. The slag serves two main functions:
Thus, calcium carbonate (CaCO3) is crucial for forming slag by providing the necessary calcium oxide (CaO) that reacts with impurities to form slag during the extraction of iron in a blast furnace.
Question 4 Rapport
At a given temperature and pressure, a gas X diffuses twice as fast as gas Y. It follows that
Détails de la réponse
To solve the problem, we can use **Graham's law of effusion**. This law states that the rate of effusion (or diffusion) of a gas is inversely proportional to the square root of its molar mass. Mathematically, this is represented as:
Rate of diffusion of Gas X / Rate of diffusion of Gas Y = sqrt(Molar mass of Gas Y / Molar mass of Gas X)
According to the given information, gas X diffuses **twice as fast** as gas Y. This implies:
2 = sqrt(Molar mass of Gas Y / Molar mass of Gas X)
To eliminate the square root, square both sides of the equation:
(2)^2 = Molar mass of Gas Y / Molar mass of Gas X
This simplifies to:
4 = Molar mass of Gas Y / Molar mass of Gas X
Rearranging the equation, we find:
Molar mass of Gas Y = 4 * Molar mass of Gas X
This means that **Gas Y is four times as heavy as Gas X**. Therefore, the correct statement is:
Question 5 Rapport
An example of a compound that is acidic in solution is
Détails de la réponse
Phosphoric acid is a weak acid that can donate three hydrogen ions in water. Phosphoric acid partially ionizes when dissolved in an aqueous solution.
Question 6 Rapport
Hydrogen chloride gas and ammonia can be used to demonstrate the fountain experiment because they are
Détails de la réponse
In the fountain experiment, hydrogen chloride gas (HCl) and ammonia (NH₃) are used to demonstrate the creation of a visible 'fountain' due to their high solubility in water. Here's a simple explanation:
When hydrogen chloride gas and ammonia gas come into contact with water, they dissolve very quickly and react vigorously. This is because both gases are very soluble in water. As they dissolve, a vacuum-like pressure is created inside the container where the gases are held, pulling water up into it, creating the 'fountain' effect.
Moreover, when HCl and NH₃ gases react with each other, they form a white, solid product known as ammonium chloride (NH₄Cl), which is a demonstration of how both gases can effectively dissolve and react with not just water, but also with each other.
Thus, the ability of these gases to create a fountain effect is primarily because they are very soluble in water, which allows them to dissolve rapidly and create the pressure differential necessary for the water to be pulled into the container dynamically.
Question 7 Rapport
A gas when mixed with oxygen, it produces a very hot and early controllable flame. What is the name of the flame and where is it used?
Détails de la réponse
The Oxy-ethylene flame is a type of flame produced when oxygen is mixed with a gas called ethylene. This mixture results in a flame that is extremely hot and can be easily controlled. Such a flame is often used in industrial applications related to cutting and welding metals. The heat generated by an oxy-ethylene flame is sufficient to melt metals, allowing them to be welded together or cut apart efficiently.
Question 8 Rapport
The volume in cm3 of a 0.12 moldm−3 HCl required to completely neutralize a 20cm3 of 0.20 moldm−3 of NaOH is
Détails de la réponse
To find the volume of HCl that is required to completely neutralize the NaOH solution, we need to use the concept of a neutralization reaction. A neutralization reaction occurs when an acid and a base react to form water and a salt, thus neutralizing each other.
In this particular reaction, the balanced chemical equation is:
HCl + NaOH → NaCl + H2O
Here, the equation tells us that one mole of HCl reacts with one mole of NaOH. Therefore, the molar ratio of HCl to NaOH is 1:1.
First, let's determine the number of moles of NaOH present in 20 cm3 solution:
Number of moles of NaOH = Concentration (mol/dm3) × Volume (dm3)
= 0.20 mol/dm3 × 20 cm3 × (1 dm3 / 1000 cm3)
= 0.20 × 0.020
= 0.004 moles
Since the reaction is in a 1:1 ratio, the number of moles of HCl required is also 0.004 moles.
Now, let's determine the volume of HCl solution required:
Volume of HCl (dm3) = Number of moles / Concentration
= 0.004 moles / 0.12 mol/dm3
= 0.03333 dm3
Convert this volume from dm3 to cm3:
0.03333 dm3 × 1000 cm3 / dm3 = 33.33 cm3
Therefore, the volume of HCl required is 33.33 cm3.
Question 9 Rapport
Alkylation of benzene is catalyzed by
Détails de la réponse
Alkylation of benzene is a part of a reaction class called **Friedel-Crafts alkylation**. In this reaction, an alkyl group is transferred to the aromatic benzene ring, making it a more complex molecule. The catalyst used in this process is **aluminium chloride (AlCl3)**.
Here's how the reaction typically works:
In contrast, the other options wouldn't effectively catalyze alkylation of benzene for the following reasons:
Therefore, **aluminium chloride** is the catalyst used for the alkylation of benzene in Friedel-Crafts reactions.
Question 10 Rapport
Solubility curve is a plot of solubility against
Détails de la réponse
A solubility curve is a plot of solubility against temperature. Let me explain in a simple way:
Solubility refers to the amount of a substance (solute) that can dissolve in a given quantity of solvent to form a homogeneous solution at a specified condition. The most common factor that affects solubility is the temperature.
Here's why a solubility curve typically involves temperature:
Therefore, plotting solubility against temperature in a solubility curve allows us to visualize and understand how solubility changes with variations in temperature.
Question 11 Rapport
A factor that does not affect the rate of a chemical reaction is
Détails de la réponse
In evaluating the factors that affect the rate of a chemical reaction, we can look at each of the possible influences: surface area, temperature, volume, and catalyst.
Surface Area: When you increase the surface area of reactants, it allows more particles to collide with each other per unit of time, which in turn increases the rate of reaction. Imagine smaller particles like powders reacting faster than larger chunks because they have a greater surface exposed to the other reactants.
Temperature: Increasing the temperature usually increases the rate of reaction. Higher temperatures cause particles to move faster, increasing the energy of collisions, and therefore increasing the chance of successful reactions.
Catalyst: A catalyst is a substance that increases the rate of a chemical reaction without being consumed by it. It lowers the activation energy needed for the reaction to occur, thus allowing it to proceed faster.
Volume: The volume of the container or the amount of space in which a reaction occurs generally does not directly affect the rate of the reaction. While changing the volume can alter pressure or concentration in gaseous reactions, which in turn affects the rate, the volume itself is not a direct factor affecting reaction rate.
Therefore, the factor that does not directly affect the rate of a chemical reaction is volume. It indirectly affects reaction rates by altering concentration or pressure in certain reaction conditions, but it is not a direct influencing factor on its own.
Question 12 Rapport
A type of isomerism that ClCH=CHCl can exhibit is
Détails de la réponse
ClCH=CHCl can exhibit geometrical isomerism and positional isomerism. ClCH=CHCl can exhibit positional isomerism because the positions of the functional groups or substituent atoms are different. Positional isomerism occurs when compounds with the same molecular formula have different properties due to the difference in the position of a functional group, multiple bond, or branched chain.
Question 13 Rapport
In the treatment of water for municipal supply, chlorine is used to
Détails de la réponse
In the treatment of water for municipal supply, chlorine is used to kill germs. This process is known as chlorination. Chlorine is a very effective disinfectant and is used to eliminate harmful microorganisms such as bacteria, viruses, and protozoans that may be present in the water. By doing so, chlorine helps to ensure that the water is safe for human consumption and protects public health by preventing waterborne diseases. It is important to note that **chlorine is not used to prevent tooth decay, prevent goitre, or to remove colour or odour** in water treatment for municipal supply.
Question 14 Rapport
The basicity of tetraoxophosphate(V) acid is
Détails de la réponse
The term basicity of an acid refers to the number of hydrogen ions (H⁺) that an acid can donate when it dissociates in water. In simpler terms, it's the number of replaceable hydrogen ions in one molecule of the acid.
Tetraoxophosphate(V) acid is another name for phosphoric acid, which has the chemical formula H₃PO₄. In this molecule, there are three hydrogen (H) atoms bonded to the phosphate group (PO₄).
When H₃PO₄ dissolves in water, it donates hydrogen ions in three steps:
Therefore, phosphoric acid, or tetraoxophosphate(V) acid, can donate a total of three hydrogen ions. Hence, the basicity of tetraoxophosphate(V) acid is 3.
Question 15 Rapport
The hybridization scheme in ethyne is
Détails de la réponse
Ethyne, also known as acetylene, is a simple alkyne with the chemical formula C2H2. In ethyne, each carbon atom is bonded to two other atoms: one hydrogen atom and the other carbon atom. The molecular structure of ethyne is linear, with a triple bond between the two carbon atoms.
To determine the hybridization scheme in ethyne, we need to examine the arrangement of the electron pairs around each carbon atom. In ethyne, each carbon atom is forming two sigma (σ) bonds and two pi (π) bonds. Let's explain:
When we consider the hybridization of the carbon atoms, we focus on the formation of sigma bonds and lone pairs. In ethyne, each carbon atom utilizes two orbitals to form sigma bonds: one with the hydrogen atom and one with the other carbon atom. This implies that each carbon atom in ethyne must use two hybrid orbitals.
The two hybrid orbitals formed by each carbon atom in ethyne are a result of mixing one s orbital with one p orbital. This hybridization is referred to as sp hybridization, characterized by a linear electron geometry. The remaining two unhybridized p orbitals on each carbon atom are responsible for forming the two pi bonds in the triple bond.
In conclusion, the hybridization scheme in ethyne is sp.
Question 16 Rapport
Benzene formed nitrobenzene at temperature of 600 C when it reacts with mixture of concentrated trioxonitrate(V) acid and concentrated
Détails de la réponse
The reaction described is the nitration of benzene to form nitrobenzene. This is an example of an electrophilic aromatic substitution reaction. **Nitration** involves replacing a hydrogen atom on a benzene ring with a nitro group (NO2). This reaction requires a nitrating mixture composed of concentrated nitric acid (trioxonitrate(V) acid) and concentrated sulfuric acid (tetraoxosulphate(VI) acid). Let me explain why:
Nitration is typically carried out using a mixture of **concentrated nitric acid and concentrated sulfuric acid** at a temperature of around **60°C**. The role of sulfuric acid in this mixture is to act as a catalyst and a dehydrating agent. It helps generate the nitronium ion (NO2+), which is the active electrophile that attacks the benzene ring.
Here's a simplified mechanism for this reaction:
None of the other options listed (hydrochloric acid, phosphoric acid, and hydrogen iodide) contain the necessary combination of properties to generate the nitronium ion and facilitate the nitration of benzene.
Therefore, the correct mixture to carry out the nitration of benzene, forming nitrobenzene at a temperature of 60°C, is a combination of **concentrated nitric acid and concentrated sulfuric acid (tetraoxosulphate(VI) acid)**.
Question 17 Rapport
Détails de la réponse
In the Contact Process, the catalyst used for the conversion of sulphur(IV) oxide (SO2) to sulphur(VI) oxide (SO3) is vanadium(V) oxide, also chemically represented as V2O5. This catalyst is preferred because it is more cost-effective and significantly more durable under reaction conditions than other catalysts such as platinum. Moreover, while platinum is also an effective catalyst, it is prone to poisoning by impurities that may be present in the reaction mixture. Vanadium(V) oxide, on the other hand, offers a better balance of efficiency, cost, and durability, making it the catalyst of choice in industrial applications of the Contact Process.
Question 18 Rapport
The electronic configuration of an atom of Nitrogen is 1s2 2s2 2p1x 2p1y 2p1z because the atom is
Détails de la réponse
The electronic configuration of nitrogen is given as: 1s2 2s2 2px1 2py1 2pz1.
This configuration suggests that nitrogen has 7 electrons, as follows:
This is the **ground state** electron configuration of nitrogen, meaning that the atoms have electrons in the **lowest possible energy levels**. It demonstrates nitrogen's **stable configuration**, where it has half-filled p orbitals, each with a single electron. This configuration obeys Hund's Rule, which states that every orbital in a subshell gets one electron before any one orbital gets two (due to electron repulsion). It also obeys the Aufbau principle which suggests electrons fill orbitals starting from the lowest energy level.
Therefore, this configuration indicates that the atom is simply obeying rules governing electron configuration. The electrons are in their lowest energy orbitals, consistent with the principles that direct electron arrangement in an atom, ensuring stability without being excited or unstable. There are no **energy changes** being depicted nor is the atom in an **excited state**—it is showing the normal ground state.
Question 19 Rapport
The IUPAC Nomenclature of CH3 CH2 C(CH3 )=C(CH3 )2 for the compound is
Détails de la réponse
The compound in question is written as CH₃₃CH₂₂C(CH₃₃)=C(CH₃₃)₂₂, which seems to be intended as (CH3)3CH2CH=C(CH3)3. The IUPAC nomenclature of organic compounds follows specific rules to name the compound uniquely such that it is understood universally. Here is a comprehensive breakdown:
1. Select the longest carbon chain that includes the highest-order functional group, which, in this case, is the alkene group (double bond).
2. The longest chain consists of 5 carbons, which gives us the root name "pentene". We choose the carbon chain such that the double bond gets the lowest possible number, starting from the end of the chain closest to the double bond.
3. Number the carbon atoms in the chain from the end closest to the double bond. The numbering direction will determine the position of the double bond and substituents. The double bond starts on carbon 2.
4. Identify and name the substituents attached to the carbon chain. In this case, there are two methyl groups on carbon 3. This means it is dimethyl as there are two of them.
Thus, the complete name of the compound is 2,3-dimethylpent-2-ene. Here, "2,3-dimethyl" indicates the position and quantity of methyl groups, "pent" indicates the longest chain with 5 carbons, and "-2-ene" indicates a double bond starting at the second carbon.
Question 20 Rapport
If 11.0g of a gas occupies 5.6 dm3 at s.t.p., calculate its vapour density (1 mole of a gas occupies 22.4 dm3 ).
Détails de la réponse
The problem requires calculating the **vapor density** of the gas. Vapor density is defined as the mass of a certain volume of a gas compared to the mass of an equal volume of hydrogen, where the hydrogen standard is 2 g/mol (as the molecular weight of hydrogen gas, H₂, is 2).
Here's a step-by-step explanation:
The calculated vapor density of the gas is 22.
Question 21 Rapport
In a chemical reaction, surface area of reactants can affect
Détails de la réponse
The surface area of reactants affects the rate of a reaction between limestone and hydrochloric acid because it increases the number of collisions between the particles of the reactants. For example, if you have a large marble chip of calcium carbonate and hydrochloric acid, the acid can't reach all the calcium carbonate in the middle of the chip. If you break the marble chip into smaller pieces, you'll have a larger surface area for the acid to react with, and the reaction will happen faster.
Question 22 Rapport
The compound of Copper used as a fungicide is
Détails de la réponse
The compound of copper that is commonly used as a fungicide is **Copper(II) sulfate**, which is represented by the chemical formula **CuSO4**.
Let's break this down for better understanding:
The other compounds listed do not serve as common fungicides:
Therefore, the correct and widely used copper compound as a fungicide is Copper(II) sulfate (CuSO4).
Question 23 Rapport
What is the vapour density of 560cm3 of a gas that weighs 0.4g at s.t.p?
[Molar Volume of gas at s.t.p = 22.4 dm3 ]
Détails de la réponse
To find the vapour density of a gas, you can use the formula:
Vapour density = (Molar mass of gas) / 2
However, first, we need to determine the molar mass of the gas. One can find the molar mass using the given data:
We know that at standard temperature and pressure (s.t.p.), 1 mole of any gas occupies 22.4 dm3. We need to convert the volume from cm3 to dm3 because the molar volume is given in dm3:
560 cm3 = 0.560 dm3
Now, let's find the number of moles in 0.560 dm3:
The number of moles (n) = Volume of gas (dm3) / Molar volume at s.t.p. (dm3/mol)
n = 0.560 dm3 / 22.4 dm3/mol
n = 0.025 moles
Given that the mass of the gas is 0.4 grams, we can find the molar mass by using the relation:
Molar Mass = Mass / Number of Moles
Molar Mass = 0.4 g / 0.025 moles
Molar Mass = 16 g/mol
Now that we have the molar mass, we can find the vapour density:
Vapour density = Molar mass / 2
Vapour density = 16 g/mol / 2
Vapour density = 8.0
Hence, the vapour density of the gas is 8.0.
Question 24 Rapport
Heat of solution involves two steps that is accompanied by heat change. The energies involved in this steps are
Détails de la réponse
The heat of solution refers to the overall energy change that occurs when a solute dissolves in a solvent. This process involves breaking and making of intermolecular forces, and it can be broken down into two main steps that are each accompanied by heat change. The energies involved in these steps are:
Lattice energy: This is the energy required to break the bonds between the ions in the solid crystal lattice of the solute. Breaking these bonds requires energy, and this step is usually endothermic, meaning it absorbs heat from the surroundings. The more energy needed to break the lattice, the higher the lattice energy.
Hydration energy: Once the lattice is broken, the ions are surrounded by solvent molecules, typically water, in a process known as hydration. The energy released when the solvent molecules interact with and stabilize the ions is called the hydration energy. This step is usually exothermic, meaning it releases heat into the surroundings.
In conclusion, the two energies involved in the heat of solution are lattice energy and hydration energy. The balance between these two energies determines whether the overall process of dissolving a solute in a solvent is endothermic or exothermic.
Question 25 Rapport
Concentrated sodium chloride solution is electrolyzed using mercury cathode and graphite anode. The products at the anode and the cathode respectively are
Détails de la réponse
When a concentrated sodium chloride solution is electrolyzed using a mercury cathode and graphite anode, the products are hydrogen gas at the cathode and chlorine gas at the anode
At the anode, 2Cl− → Cl2 + 2e−
At the cathode, 2H+ + 2e− → H2
During the electrolysis, hydrogen and chloride ions are removed from solution whereas sodium and hydroxide ions are left behind in solution. This means that sodium hydroxide is also formed during the electrolysis of sodium chloride solution.
Question 26 Rapport
The term that is not associated with petroleum industry is ?
Détails de la réponse
Cracking, saponification and polymerization are all terminologies associated with the petroleum industry but fermentation is associated with the brewery industry.
Cracking is a chemical process that breaks down heavy hydrocarbon molecules into lighter, more useful ones.
Saponification is a chemical reaction that converts fats and oils into soap. It's not directly involved in petroleum, but it can be used to analyze petroleum products.
Polymerization is a process in the petroleum industry that converts light olefin gases into higher molecular weight hydrocarbons.
Fermentation is the process in which a substance breaks down into a simpler substance. Microorganisms like yeast and bacteria usually play a role in the fermentation process, creating beer, wine, bread,yogurt and other foods.
Question 27 Rapport
Which of the following is an air pollutant?
Détails de la réponse
An air pollutant is any substance in the air, introduced by natural or human activity, that causes harm or discomfort to living organisms, or damages the environment. Let's analyze the substances mentioned:
1. O2 (Oxygen)
Oxygen is the gas we need to breathe. It's not considered an air pollutant because it is essential for human and animal life, as well as many natural processes.
2. CO (Carbon Monoxide)
Carbon Monoxide is a colorless, odorless gas that is produced by burning fuel (like in cars and factories). This gas can be very dangerous if there is a lot of it, as it can prevent oxygen from entering the bloodstream. Because of its harmful effects, it is considered an air pollutant.
3. H2 (Hydrogen)
Hydrogen, while a flammable gas, is generally not harmful to the air or to organisms when it is released into the environment. Therefore, it is not considered an air pollutant.
4. O3 (Ozone)
Ozone is a bit tricky because it is both good and bad. Higher up in the atmosphere, it forms a layer that protects us from the sun’s UV radiation. However, at ground level, it is a harmful air pollutant. Ground-level ozone can cause health problems such as respiratory difficulties, so in this context, it is considered an air pollutant.
In conclusion, the substances that are considered air pollutants in this context are Carbon Monoxide (CO) and ground-level Ozone (O3).
Question 28 Rapport
For chemical reaction to be spontaneous, ∆G must be
Détails de la réponse
In the context of chemical reactions, the spontaneity of a reaction is determined by the Gibbs Free Energy change, represented by the symbol ΔG. A chemical reaction is considered to be spontaneous if it proceeds on its own without needing continuous external input of energy.
For a reaction to be spontaneous, the value of ∆G must be negative. This is based on the Gibbs Free Energy equation:
ΔG = ΔH - TΔS
Where:
A negative value for ΔG indicates that the process releases energy and will proceed spontaneously. This means the system is moving towards a lower energy and more stable state, naturally favoring the products over the reactants.
In contrast, a positive ΔG indicates that the reaction is non-spontaneous and requires energy input. If ΔG is zero, the system is at equilibrium, meaning there is no net change taking place, but this doesn't indicate spontaneity.
Therefore, in summary, for a reaction to be spontaneous, ∆G must be negative.
Question 29 Rapport
The scientist that performed the experiment on discharged tubes that led to the discovery of the cathode rays as a sub-atomic particle is
Détails de la réponse
The **scientist who performed the experiment on discharge tubes that led to the discovery of cathode rays as a sub-atomic particle** is J.J. Thomson.
In the late 19th century, J.J. Thomson conducted experiments using a cathode ray tube. This device involved an evacuated glass tube with electrodes at each end, through which an electric current was passed. **When a high voltage was applied, Thomson observed a stream of particles traveling from the negative electrode (cathode) to the positive electrode (anode).** These streams of particles were what he called "cathode rays."
Through his experiments, J.J. Thomson discovered that these cathode rays were composed of negatively charged particles. **He concluded that these particles were much smaller than atoms, and named them "electrons," which are now known to be sub-atomic particles.** His work was fundamental in advancing the atomic model and in understanding the structure of the atom.
Thomson's discovery was pivotal because it provided the first evidence that atoms are not indivisible, but rather consist of smaller subatomic particles. This **challenged the then-prevailing notion of atoms as indivisible units**, thus marking the birth of modern particle physics.
Question 30 Rapport
An example of a physical change is
Détails de la réponse
A physical change involves a change in the physical properties of a substance, without a change in its chemical composition. This means that the substance remains the same at the molecular level, despite how it might appear differently.
An example of a physical change from the given options is the liquefaction of liquids. In this process, a substance transitions from a solid or gas to a liquid state. This change is purely physical because the molecular structure of the substance does not change; only its state or form does. Importantly, such a change is usually reversible, meaning the substance can return to its original state. For instance, water can change into ice (frozen) or steam (vapor), and can still revert back to liquid water.
On the other hand, the other options involve chemical changes, where the original substances undergo chemical reactions to form new substances with different properties, thus altering the molecular structure depending on the option.
Question 31 Rapport
CH3 -CH2 -OH and CH3 -O-CH3
The relationship between the two compounds above, is that they are
Détails de la réponse
The relationship between the two compounds is that they are isomers.
To understand why these compounds are isomers, let's break down their structures and definitions:
1. Structures of the Compounds:
2. Definitions:
Both compounds have the same molecular formula: C2H6O. However, they have different arrangements of their atoms. Ethanol has a hydroxyl group (-OH) attached to an ethyl group (CH3-CH2-), while dimethyl ether involves two methyl groups (CH3-) bonded to an oxygen atom (O). This difference in structure leads to different chemical and physical properties, despite having the same molecular formula. Hence, these two compounds are classified as isomers.
Question 32 Rapport
When Calcium ethynide is decomposed by water, the gas produced is
Détails de la réponse
When water reacts with calcium ethynide, the gas produced is ethyne (also known as acetylene), which is represented by the chemical formula C2H2.
The chemical reaction involved is as follows:
CaC2 + 2 H2O → C2H2 + Ca(OH)2
Let's break down this process to make it understandable:
The key point to remember here is that the gas produced is **ethyne (C2H2)**, which is useful in various industrial applications, such as welding and as a precursor for other chemicals.
Question 33 Rapport
The stability of atomic nucleus is determined by ratio of
Détails de la réponse
The stability of an atomic nucleus is primarily determined by the neutron/proton ratio. This refers to the number of neutrons in relation to the number of protons within the nucleus. Let's break down why this ratio is crucial for nuclear stability:
The right balance between the number of neutrons and protons helps in achieving nuclear stability.
An imbalance in this ratio often results in an unstable nucleus, leading to radioactive decay as the nucleus attempts to reach a more stable form. This is why the neutron/proton ratio is a fundamental factor in the stability of the atomic nucleus.
Question 34 Rapport
The term strong and weak acids is used to indicate the
Détails de la réponse
The terms strong and weak acids are used to indicate the extent of ionization of an acid. This means how completely an acid dissociates into its ions in water.
Strong acids completely dissociate in water. This means that nearly all the acid molecules break down into positive hydrogen ions (H+) and their respective anions. Examples include hydrochloric acid (HCl), sulfuric acid (H2SO4), and nitric acid (HNO3).
Weak acids, on the other hand, only partially dissociate in water. This means that only a small fraction of the acid molecules break down into ions. Most of the acid remains in its molecular form. An example of a weak acid is acetic acid (CH3COOH), which is found in vinegar.
Therefore, the strength of an acid in terms of its classification as strong or weak is about how fully it dissociates into ions in an aqueous solution, not about the number of H+ ions or the strength of its action on substances.
Question 35 Rapport
| COMPOUND | S | T | U | V | W |
| FORMULA | ROR' | RCOOH' | RCOR' | ROH' | RCOOR' |
From the table above, which of these two compounds can form functional group isomers?
Détails de la réponse
ROH' and ROR' can form functional group isomers because they are the functional groups of alcohols and ethers, respectively.
Ethers have a pair of alkyl or aromatic groups attached to a linking oxygen atom. ROH is the functional group of alcohols, which are derivatives of water with one hydrogen atom replaced by an alkyl group.
Alcohols (ROH) and ethers (ROR') can form functional group isomers because they have the same chemical formula but different functional groups. E.g CH3 CH2 OH and CH3 OCH3
Question 36 Rapport
The quantity of electricity required to deposit 180g of Ag from a molten silver trioxonitrate(V) is
[Ag = 108]
Détails de la réponse
To determine the quantity of electricity required to deposit 180g of Ag (silver) from molten silver trioxonitrate(V), we need to understand the concept of electrolysis. During electrolysis, a metal can be deposited according to Faraday's laws of electrolysis.
The equivalent weight of a substance is calculated by dividing the atomic mass by the valency. For silver (Ag), the atomic mass is given as 108 and the valency of silver in AgNO3 is 1. This makes the equivalent weight of Ag 108 g/equivalent.
According to Faraday's first law of electrolysis:
Mass of substance deposited = (Equivalent weight × Quantity of electricity (in coulombs) ) / Faraday's constant (96500 C/mol)
Let's calculate the number of equivalents of silver deposited:
Number of equivalents of Ag = Mass of Ag / Equivalent weight = 180 g / 108 g/equivalent = 5/3 equivalents
The quantity of electricity required to deposit 1 equivalent of a substance is 1 Faraday (F) = 96500 C.
Therefore, the total quantity of electricity required:
Quantity of electricity = Number of equivalents × Faraday's constant
Quantity of electricity = (5/3 equivalents) × 1 F = 5/3 F = 1.67 F
Therefore, 1.67 Faraday is required to deposit 180g of Ag from a molten silver trioxonitrate(V).
Question 37 Rapport
The molecular formular of a hydrocarbon with an empirical formula of CH3 and a molar mass of 30 is
Détails de la réponse
To find the molecular formula of a hydrocarbon given its empirical formula and molar mass, you need to compare the empirical formula mass with the given molar mass.
The empirical formula given is CH3. The molar mass of the empirical formula is calculated as follows:
Total empirical formula mass = 12 + 3 = 15 g/mol
The provided molar mass of the compound is 30 g/mol. To determine how many empirical units are in the molecular formula, divide the molecular mass (given) by the empirical formula mass:
Number of empirical units = 30 g/mol / 15 g/mol = 2
Therefore, the molecular formula is twice the empirical formula:
Empirical formula: CH3
Molecular formula: (CH3)2 = C2H6
The correct molecular formula is C2H6.
Question 38 Rapport
The constituent of petroleum fraction used in surfacing road is
Détails de la réponse
Among the options listed, the constituent of petroleum used in surfacing roads is bitumen. Bitumen, also known as asphalt, is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It is the last fraction obtained when crude oil is distilled and is often left over after the lighter components are extracted.
Reasons why bitumen is used for road surfacing:
Due to these properties, bitumen is extensively used in road construction and surfacing, ensuring roads are durable, smooth, and safe for travel.
Question 39 Rapport
Fog is a colloid in which
Détails de la réponse
**Fog** is a type of colloid, which is a mixture where very small particles of one substance are evenly distributed throughout another substance. In the case of fog, it consists of tiny **liquid droplets** that are dispersed in a **gas**. Specifically, these are tiny droplets of water suspended in the air. When you walk through fog, you are essentially walking through air that contains these minute water droplets.
Thus, the correct description of fog as a colloid is that it consists of **liquid particles dispersed in a gas medium**. The liquid here is water, and the gas is air.
Question 40 Rapport
Hydrochloric acid is regarded as a strong acid because it
Détails de la réponse
Hydrochloric acid (HCl) is regarded as a strong acid because it ionizes completely in water. This means that when HCl is dissolved in water, it breaks down entirely into hydrogen ions (H+) and chloride ions (Cl-). In a solution, there are no molecules of HCl left; only its ions are present.
This complete ionization results in a high concentration of hydrogen ions, which is a key characteristic of strong acids. Because there are more hydrogen ions available, hydrochloric acid can readily participate in chemical reactions, particularly those involving proton transfers, like neutralization reactions with bases.
In summary, the reason HCl is considered strong is due to its ability to consistently and completely ionize in an aqueous solution, not because of its physical state, source, or reactive nature with bases. Therefore, the property that defines it as a strong acid is that it ionizes completely.
Souhaitez-vous continuer cette action ?