Cargando....
|
Mantén pulsado para arrastrar. |
|||
|
Haz clic aquí para cerrar |
|||
Pregunta 1 Informe
Cx Hy O + 5O2 → 4CO2 + 4H2 O
Cx Hy O in the equation is
Detalles de la respuesta
Cx Hy O + 5O2 → 4CO2 + 4H2 O
On balancing the equation, we should have
X = 4 , y = 8 and O = 2 ⇒ C4 H8 O2
Since 2 is a common factor to the three atoms, we can divide through by 2, considering the fact that that formula is not in the option.
We finally have C2 H4 O
Pregunta 2 Informe
The molecular formular of a hydrocarbon with an empirical formula of CH3 and a molar mass of 30 is
Detalles de la respuesta
To find the molecular formula of a hydrocarbon given its empirical formula and molar mass, you need to compare the empirical formula mass with the given molar mass.
The empirical formula given is CH3. The molar mass of the empirical formula is calculated as follows:
Total empirical formula mass = 12 + 3 = 15 g/mol
The provided molar mass of the compound is 30 g/mol. To determine how many empirical units are in the molecular formula, divide the molecular mass (given) by the empirical formula mass:
Number of empirical units = 30 g/mol / 15 g/mol = 2
Therefore, the molecular formula is twice the empirical formula:
Empirical formula: CH3
Molecular formula: (CH3)2 = C2H6
The correct molecular formula is C2H6.
Pregunta 3 Informe
Heat of solution involves two steps that is accompanied by heat change. The energies involved in this steps are
Detalles de la respuesta
The heat of solution refers to the overall energy change that occurs when a solute dissolves in a solvent. This process involves breaking and making of intermolecular forces, and it can be broken down into two main steps that are each accompanied by heat change. The energies involved in these steps are:
Lattice energy: This is the energy required to break the bonds between the ions in the solid crystal lattice of the solute. Breaking these bonds requires energy, and this step is usually endothermic, meaning it absorbs heat from the surroundings. The more energy needed to break the lattice, the higher the lattice energy.
Hydration energy: Once the lattice is broken, the ions are surrounded by solvent molecules, typically water, in a process known as hydration. The energy released when the solvent molecules interact with and stabilize the ions is called the hydration energy. This step is usually exothermic, meaning it releases heat into the surroundings.
In conclusion, the two energies involved in the heat of solution are lattice energy and hydration energy. The balance between these two energies determines whether the overall process of dissolving a solute in a solvent is endothermic or exothermic.
Pregunta 4 Informe
Nitrogen obtained from air is not absolutely pure because it contains the following except
Detalles de la respuesta
Nitrogen obtained from air is not absolutely pure because it contains other gases, including:
Pregunta 5 Informe
A typical chemical reaction will be spontaneous if
Detalles de la respuesta
In thermodynamics, a chemical reaction is considered spontaneous when it occurs naturally under a given set of conditions without needing to be driven by an external force. The spontaneity of a reaction is best determined by the Gibbs Free Energy change, denoted as ΔG.
The criteria for spontaneity is as follows:
Now, let's relate this to the given options:
Thus, a chemical reaction is spontaneous when the Gibbs Free Energy change (ΔG) is negative.
Pregunta 6 Informe
A factor that does not affect the rate of a chemical reaction is
Detalles de la respuesta
In evaluating the factors that affect the rate of a chemical reaction, we can look at each of the possible influences: surface area, temperature, volume, and catalyst.
Surface Area: When you increase the surface area of reactants, it allows more particles to collide with each other per unit of time, which in turn increases the rate of reaction. Imagine smaller particles like powders reacting faster than larger chunks because they have a greater surface exposed to the other reactants.
Temperature: Increasing the temperature usually increases the rate of reaction. Higher temperatures cause particles to move faster, increasing the energy of collisions, and therefore increasing the chance of successful reactions.
Catalyst: A catalyst is a substance that increases the rate of a chemical reaction without being consumed by it. It lowers the activation energy needed for the reaction to occur, thus allowing it to proceed faster.
Volume: The volume of the container or the amount of space in which a reaction occurs generally does not directly affect the rate of the reaction. While changing the volume can alter pressure or concentration in gaseous reactions, which in turn affects the rate, the volume itself is not a direct factor affecting reaction rate.
Therefore, the factor that does not directly affect the rate of a chemical reaction is volume. It indirectly affects reaction rates by altering concentration or pressure in certain reaction conditions, but it is not a direct influencing factor on its own.
Pregunta 7 Informe
The hybridization scheme in ethyne is
Detalles de la respuesta
Ethyne, also known as acetylene, is a simple alkyne with the chemical formula C2H2. In ethyne, each carbon atom is bonded to two other atoms: one hydrogen atom and the other carbon atom. The molecular structure of ethyne is linear, with a triple bond between the two carbon atoms.
To determine the hybridization scheme in ethyne, we need to examine the arrangement of the electron pairs around each carbon atom. In ethyne, each carbon atom is forming two sigma (σ) bonds and two pi (π) bonds. Let's explain:
When we consider the hybridization of the carbon atoms, we focus on the formation of sigma bonds and lone pairs. In ethyne, each carbon atom utilizes two orbitals to form sigma bonds: one with the hydrogen atom and one with the other carbon atom. This implies that each carbon atom in ethyne must use two hybrid orbitals.
The two hybrid orbitals formed by each carbon atom in ethyne are a result of mixing one s orbital with one p orbital. This hybridization is referred to as sp hybridization, characterized by a linear electron geometry. The remaining two unhybridized p orbitals on each carbon atom are responsible for forming the two pi bonds in the triple bond.
In conclusion, the hybridization scheme in ethyne is sp.
Pregunta 8 Informe
Hydrochloric acid is regarded as a strong acid because it
Detalles de la respuesta
Hydrochloric acid (HCl) is regarded as a strong acid because it ionizes completely in water. This means that when HCl is dissolved in water, it breaks down entirely into hydrogen ions (H+) and chloride ions (Cl-). In a solution, there are no molecules of HCl left; only its ions are present.
This complete ionization results in a high concentration of hydrogen ions, which is a key characteristic of strong acids. Because there are more hydrogen ions available, hydrochloric acid can readily participate in chemical reactions, particularly those involving proton transfers, like neutralization reactions with bases.
In summary, the reason HCl is considered strong is due to its ability to consistently and completely ionize in an aqueous solution, not because of its physical state, source, or reactive nature with bases. Therefore, the property that defines it as a strong acid is that it ionizes completely.
Pregunta 9 Informe
An oxide of nitrogen that can rekindle a glowing splint is
Detalles de la respuesta
The ability to rekindle a glowing splint is an indicator of the presence of an oxidizing agent, typically oxygen or a substance that releases oxygen. Among oxides of nitrogen, only a few are capable of doing this.
Nitrogen(I) oxide, commonly known as nitrous oxide (N2O), is not a strong enough oxidizer to rekindle a glowing splint.
Nitrogen(II) oxide, known as nitric oxide (NO), is not stable in the presence of oxygen and does not have the ability to rekindle a glowing splint because it does not actively release oxygen.
Nitrogen(IV) oxide or nitrogen dioxide (NO2), can support combustion by releasing oxygen as it decomposes. It is a brown gas and an effective oxidizer.
Dinitrogen tetraoxide (N2O4) is in equilibrium with nitrogen dioxide (NO2). However, at standard conditions, it is not as effective an oxidizer for rekindling a glowing splint as pure NO2.
In conclusion, the oxide of nitrogen that can rekindle a glowing splint is nitrogen(IV) oxide or nitrogen dioxide (NO2) due to its ability to release oxygen and support combustion.
Pregunta 10 Informe
The product formed when ethyne is passed through a hot tube containing finely divided iron is
Detalles de la respuesta
When **ethyne** (also known as acetylene) is passed through a hot tube containing finely divided iron, a process called decomposition occurs. The heat causes the ethyne molecules to break down, and under these conditions, they **re-combine** to form structures that result in more complex molecules.
The key transformation involves the conversion of these ethyne molecules into **aromatic compounds**. Aromatic compounds, such as **benzene**, have a distinct ring structure and are characterized by **stability** due to resonance (a phenomenon where electrons are delocalized over a certain structure, providing extra stability).
Thus, when ethyne is passed through a hot iron tube, it undergoes trimerization to form benzene, an **aromatic** compound. Therefore, the product formed is **aromatic**.
Pregunta 11 Informe
The volume in cm3 of a 0.12 moldm−3 HCl required to completely neutralize a 20cm3 of 0.20 moldm−3 of NaOH is
Detalles de la respuesta
To find the volume of HCl that is required to completely neutralize the NaOH solution, we need to use the concept of a neutralization reaction. A neutralization reaction occurs when an acid and a base react to form water and a salt, thus neutralizing each other.
In this particular reaction, the balanced chemical equation is:
HCl + NaOH → NaCl + H2O
Here, the equation tells us that one mole of HCl reacts with one mole of NaOH. Therefore, the molar ratio of HCl to NaOH is 1:1.
First, let's determine the number of moles of NaOH present in 20 cm3 solution:
Number of moles of NaOH = Concentration (mol/dm3) × Volume (dm3)
= 0.20 mol/dm3 × 20 cm3 × (1 dm3 / 1000 cm3)
= 0.20 × 0.020
= 0.004 moles
Since the reaction is in a 1:1 ratio, the number of moles of HCl required is also 0.004 moles.
Now, let's determine the volume of HCl solution required:
Volume of HCl (dm3) = Number of moles / Concentration
= 0.004 moles / 0.12 mol/dm3
= 0.03333 dm3
Convert this volume from dm3 to cm3:
0.03333 dm3 × 1000 cm3 / dm3 = 33.33 cm3
Therefore, the volume of HCl required is 33.33 cm3.
Pregunta 12 Informe
When a few drops of Millon reagents is added to egg-white solution in a test tube, the white precipitate changes to
Detalles de la respuesta
When a few drops of Millon's reagent is added to an egg-white solution in a test tube and the solution is boiled, the white precipitate turns brick red. This indicates the presence of proteins.
Pregunta 13 Informe
The composition of alloy permalloy is iron and
Detalles de la respuesta
The alloy known as **permalloy** is composed primarily of **iron** and **nickel**. Permalloy is a well-known magnetic alloy that typically consists of about **80% nickel and 20% iron**. It is renowned for having high magnetic permeability, meaning it can become magnetized easily, which makes it extremely useful in a variety of electrical and magnetic applications, such as transformers, memory storage, and magnetic shielding. The nickel in permalloy enhances the magnetic properties of the iron, giving the alloy its unique characteristics.
Pregunta 14 Informe
Benzene formed nitrobenzene at temperature of 600 C when it reacts with mixture of concentrated trioxonitrate(V) acid and concentrated
Detalles de la respuesta
The reaction described is the nitration of benzene to form nitrobenzene. This is an example of an electrophilic aromatic substitution reaction. **Nitration** involves replacing a hydrogen atom on a benzene ring with a nitro group (NO2). This reaction requires a nitrating mixture composed of concentrated nitric acid (trioxonitrate(V) acid) and concentrated sulfuric acid (tetraoxosulphate(VI) acid). Let me explain why:
Nitration is typically carried out using a mixture of **concentrated nitric acid and concentrated sulfuric acid** at a temperature of around **60°C**. The role of sulfuric acid in this mixture is to act as a catalyst and a dehydrating agent. It helps generate the nitronium ion (NO2+), which is the active electrophile that attacks the benzene ring.
Here's a simplified mechanism for this reaction:
None of the other options listed (hydrochloric acid, phosphoric acid, and hydrogen iodide) contain the necessary combination of properties to generate the nitronium ion and facilitate the nitration of benzene.
Therefore, the correct mixture to carry out the nitration of benzene, forming nitrobenzene at a temperature of 60°C, is a combination of **concentrated nitric acid and concentrated sulfuric acid (tetraoxosulphate(VI) acid)**.
Pregunta 15 Informe
The IUPAC name of the compound above is
Detalles de la respuesta
To determine the IUPAC name of a compound, follow these steps:
Hence, by following these steps, if the bromo and methyl groups are both attached to the second carbon (lowest numbering possible), the IUPAC name of the compound is "2-bromo, 2-methyl butane."
Pregunta 16 Informe
What is the vapour density of 560cm3 of a gas that weighs 0.4g at s.t.p?
[Molar Volume of gas at s.t.p = 22.4 dm3 ]
Detalles de la respuesta
To find the vapour density of a gas, you can use the formula:
Vapour density = (Molar mass of gas) / 2
However, first, we need to determine the molar mass of the gas. One can find the molar mass using the given data:
We know that at standard temperature and pressure (s.t.p.), 1 mole of any gas occupies 22.4 dm3. We need to convert the volume from cm3 to dm3 because the molar volume is given in dm3:
560 cm3 = 0.560 dm3
Now, let's find the number of moles in 0.560 dm3:
The number of moles (n) = Volume of gas (dm3) / Molar volume at s.t.p. (dm3/mol)
n = 0.560 dm3 / 22.4 dm3/mol
n = 0.025 moles
Given that the mass of the gas is 0.4 grams, we can find the molar mass by using the relation:
Molar Mass = Mass / Number of Moles
Molar Mass = 0.4 g / 0.025 moles
Molar Mass = 16 g/mol
Now that we have the molar mass, we can find the vapour density:
Vapour density = Molar mass / 2
Vapour density = 16 g/mol / 2
Vapour density = 8.0
Hence, the vapour density of the gas is 8.0.
Pregunta 17 Informe
H2 S(g) + Cl2 (g) → 2HCl(g) + S(s)
What is the change in oxidation state of sulphur from reactant to product?
Detalles de la respuesta
To determine the change in oxidation state of sulfur, follow these steps:
In the given reaction:
H2S(g) + Cl2(g) → 2HCl(g) + S(s)
We observe:
Thus, the change in oxidation state of sulfur when moving from the reactants to the products is from **-2** to **0**. This indicates that sulfur is being oxidized.
The correct answer is that the oxidation state of sulfur changes from **-2 to 0**.
Pregunta 18 Informe
When a specie undergoes oxidation, its
Detalles de la respuesta
When a species undergoes oxidation, it experiences an increase in its oxidation number. Oxidation is a chemical process where a species loses electrons. In terms of oxidation number, electrons have a negative charge, so losing them results in an increase in charge. Thus, the oxidation number of the species becomes more positive or less negative.
To help understand, consider sodium (Na) reacting with chlorine (Cl2) to form sodium chloride (NaCl):
This change clearly shows that when sodium is oxidized, its oxidation number increases.
Therefore, the correct explanation is: a species undergoing oxidation will have its oxidation number increase.
Pregunta 19 Informe
Rust on the surface of a metal sheet contains
Detalles de la respuesta
Rust on the surface of a metal, specifically on **iron**, is primarily composed of **hydrated iron(III) oxide**. The rusting process occurs when **iron** reacts with **oxygen** and **water** from the environment. This chemical reaction typically produces a compound called **iron(III) oxide**, which is then combined with water molecules, resulting in **hydrated iron(III) oxide**. This hydrated state gives rust its characteristic flaky and reddish-brown appearance.
Pregunta 20 Informe
An example of an amphoteric oxide is
Detalles de la respuesta
An example of an amphoteric oxide is Al2O3 (aluminum oxide).
Amphoteric oxides are special because they can act as both acidic and basic oxides. This means they can react with both acids and bases to form salts and water, showcasing their dual behavior.
Here is how it works:
In contrast, oxides like CuO (copper(II) oxide) are basic oxides, and K2O (potassium oxide) is a basic oxide as well. They don't exhibit both acidic and basic properties.
Therefore, the amphoteric nature of Al2O3 is what distinguishes it from common oxides that are strictly acidic or basic. This property is crucial in various chemical processes and applications.
Pregunta 21 Informe
When the subsidiary quantum numbers (l) equals 1, the shape of the orbital is
Detalles de la respuesta
The subsidiary quantum number, often referred to as the azimuthal quantum number or angular momentum quantum number, is denoted by l. This quantum number defines the shape of the atomic orbital. The value of l determines the type of orbital as follows:
For l = 1, the atomic orbital is a p orbital, which is characterized by its dumb-bell shape. This means that the electron density is concentrated in two lobes on opposite sides of the nucleus, resembling a dumb-bell.
Pregunta 22 Informe
How much of 5g of radioactive element whose half life is 50days remains after 200days?
Detalles de la respuesta
To determine how much of a radioactive element remains after a certain period, we use the concept of half-life. The half-life of a substance is the time it takes for half of the initial amount of a radioactive element to decay. In this example, the half-life is given as 50 days.
We want to know how much of a 5g sample remains after 200 days. First, calculate how many half-lives occur in 200 days:
Number of half-lives = Total time elapsed / Half-life
= 200 days / 50 days
= 4 half-lives
Next, we calculate the remaining amount after each half-life period:
After 200 days, 0.31g of the radioactive element remains.
Pregunta 23 Informe
The constituent of petroleum fraction used in surfacing road is
Detalles de la respuesta
Among the options listed, the constituent of petroleum used in surfacing roads is bitumen. Bitumen, also known as asphalt, is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It is the last fraction obtained when crude oil is distilled and is often left over after the lighter components are extracted.
Reasons why bitumen is used for road surfacing:
Due to these properties, bitumen is extensively used in road construction and surfacing, ensuring roads are durable, smooth, and safe for travel.
Pregunta 24 Informe
An example of a substance that does not change directly from solid to gas when heated is
Detalles de la respuesta
When discussing the process of substances changing states, some substances can transition directly from a solid to a gas without passing through a liquid state. This process is called sublimation. However, not all substances exhibit this behavior. Let's examine the substances provided:
In conclusion, calcium carbonate (CaCO3) is the substance that does not change directly from a solid to a gas when heated, as it undergoes a decomposition process instead.
Pregunta 25 Informe
Which of the following is used in forming slag in the blast furnace for the extraction of iron?
Detalles de la respuesta
In the process of extracting iron in a blast furnace, CaCO3, or calcium carbonate, plays a crucial role in forming slag. Here is a simple and comprehensive explanation of how it works:
1. Role of Calcium Carbonate (CaCO3):
Calcium carbonate is commonly used as a flux in the blast furnace. When it is introduced into the furnace, it undergoes a decomposition reaction due to the high temperatures, breaking down into calcium oxide (CaO) and carbon dioxide (CO2).
2. Formation of Slag:
The calcium oxide (CaO) produced then reacts with silicon dioxide (SiO2) present in the iron ore. This reaction forms a liquid slag of calcium silicate. The slag serves two main functions:
Thus, calcium carbonate (CaCO3) is crucial for forming slag by providing the necessary calcium oxide (CaO) that reacts with impurities to form slag during the extraction of iron in a blast furnace.
Pregunta 26 Informe
A gas that turns lime water milky is likely to be from
Detalles de la respuesta
The gas that turns lime water milky is **Carbon Dioxide**. This is because carbon dioxide reacts with calcium hydroxide, which is the main component of lime water, to form calcium carbonate. This chemical reaction can be represented by the equation:
Ca(OH)2 (aq) + CO2 (g) → CaCO3 (s) + H2O (l)
In this equation, calcium hydroxide ({Ca(OH)2}) in the lime water reacts with carbon dioxide ({CO2}) to produce calcium carbonate ({CaCO3}) and water ({H2O}).
The result is a milky or cloudy appearance due to the formation of insoluble calcium carbonate precipitate in the lime water. This reaction is a common test for the presence of carbon dioxide gas.
Among the options given, **Trioxocarbonate(IV)** is another name for the Carbonate group involving the gas carbon dioxide ({CO2}). Hence, the gas related to Trioxocarbonate(IV) is the one that turns lime water milky.
Pregunta 27 Informe
A radioactive element of mass 1g has half-life of 2 minutes, what fraction of the substance would have disintegrated after 10 minutes?
Detalles de la respuesta
Originalmass2n
= Residual mass
Where n = number of activity = exposuretimehalflife
Given:
Original mass = 1g, exposure time = 10 minutes , half life = 2 minutes, Residual mass = ?
Substituting all the given parameters appropriately, we have
n = 102
n = 5
Originalmass2n = Residual mass
125
5 = Residual mass
132 = Residual mass
Residual mass = 132
or 0.03125g
Pregunta 28 Informe
When Sulphur(IV)oxide is passed into solution of acidified tetraoxomanganate(VII), the colour changes from
Detalles de la respuesta
When Sulphur(IV) oxide (SO2) is passed into a solution of acidified tetraoxomanganate (VII) (KMnO4), it acts as a reducing agent. This reaction involves the reduction of potassium permanganate (KMnO4), which is characterized by a distinctive color change.
The tetraoxomanganate (VII) ion (MnO4-) is purple in color. During the reaction, SO2 gets oxidized while the MnO4- ion is reduced to Mn2+, which is almost colorless or pale pink, depending on the concentration.
Thus, the color of the solution changes from purple to almost colorless as the reaction progresses.
Pregunta 29 Informe
The highest isotope of hydrogen is
Detalles de la respuesta
Hydrogen has three naturally occurring isotopes, and each of them contains the same number of protons but different numbers of neutrons. Let's briefly differentiate them:
The highest isotope of hydrogen is tritium because it has the most neutrons and, therefore, the greatest atomic mass compared to the other isotopes. It is also noteworthy that tritium is radioactive, while the other hydrogen isotopes are stable.
Pregunta 30 Informe
The scientist that performed the experiment on discharged tubes that led to the discovery of the cathode rays as a sub-atomic particle is
Detalles de la respuesta
The **scientist who performed the experiment on discharge tubes that led to the discovery of cathode rays as a sub-atomic particle** is J.J. Thomson.
In the late 19th century, J.J. Thomson conducted experiments using a cathode ray tube. This device involved an evacuated glass tube with electrodes at each end, through which an electric current was passed. **When a high voltage was applied, Thomson observed a stream of particles traveling from the negative electrode (cathode) to the positive electrode (anode).** These streams of particles were what he called "cathode rays."
Through his experiments, J.J. Thomson discovered that these cathode rays were composed of negatively charged particles. **He concluded that these particles were much smaller than atoms, and named them "electrons," which are now known to be sub-atomic particles.** His work was fundamental in advancing the atomic model and in understanding the structure of the atom.
Thomson's discovery was pivotal because it provided the first evidence that atoms are not indivisible, but rather consist of smaller subatomic particles. This **challenged the then-prevailing notion of atoms as indivisible units**, thus marking the birth of modern particle physics.
Pregunta 31 Informe
| COMPOUND | S | T | U | V | W |
| FORMULA | ROR' | RCOOH' | RCOR' | ROH' | RCOOR' |
From the table above, which of these two compounds can form functional group isomers?
Detalles de la respuesta
ROH' and ROR' can form functional group isomers because they are the functional groups of alcohols and ethers, respectively.
Ethers have a pair of alkyl or aromatic groups attached to a linking oxygen atom. ROH is the functional group of alcohols, which are derivatives of water with one hydrogen atom replaced by an alkyl group.
Alcohols (ROH) and ethers (ROR') can form functional group isomers because they have the same chemical formula but different functional groups. E.g CH3 CH2 OH and CH3 OCH3
Pregunta 32 Informe
Detalles de la respuesta
When a metal reacts with an acid, a chemical reaction takes place in which the metal displaces the hydrogen in the acid. This reaction produces a salt and hydrogen gas is liberated in the process.
Let's break it down further:
The general equation for the reaction is:
Metal + Acid → Salt + Hydrogen Gas
For example, when zinc (a metal) reacts with hydrochloric acid (an acid), the reaction is as follows:
Zn + 2HCl → ZnCl2 + H2
Here, zinc chloride (a salt) and hydrogen gas are produced. This illustrates that salt and hydrogen gas are formed when a metal reacts with an acid.
Pregunta 33 Informe
An example of a compound that is acidic in solution is
Detalles de la respuesta
Phosphoric acid is a weak acid that can donate three hydrogen ions in water. Phosphoric acid partially ionizes when dissolved in an aqueous solution.
Pregunta 34 Informe
In the conductance of aqueous CuSO4 solution, the current carriers are the
Detalles de la respuesta
In the conductance of aqueous CuSO4 solution, the current carriers are the hydrated ions.
Here's why:
The other options can be understood as follows:
The correct answer is therefore hydrated ions because they enable the conduction of electricity through the aqueous solution.
Pregunta 35 Informe
The quantity of electricity required to deposit 180g of Ag from a molten silver trioxonitrate(V) is
[Ag = 108]
Detalles de la respuesta
To determine the quantity of electricity required to deposit 180g of Ag (silver) from molten silver trioxonitrate(V), we need to understand the concept of electrolysis. During electrolysis, a metal can be deposited according to Faraday's laws of electrolysis.
The equivalent weight of a substance is calculated by dividing the atomic mass by the valency. For silver (Ag), the atomic mass is given as 108 and the valency of silver in AgNO3 is 1. This makes the equivalent weight of Ag 108 g/equivalent.
According to Faraday's first law of electrolysis:
Mass of substance deposited = (Equivalent weight × Quantity of electricity (in coulombs) ) / Faraday's constant (96500 C/mol)
Let's calculate the number of equivalents of silver deposited:
Number of equivalents of Ag = Mass of Ag / Equivalent weight = 180 g / 108 g/equivalent = 5/3 equivalents
The quantity of electricity required to deposit 1 equivalent of a substance is 1 Faraday (F) = 96500 C.
Therefore, the total quantity of electricity required:
Quantity of electricity = Number of equivalents × Faraday's constant
Quantity of electricity = (5/3 equivalents) × 1 F = 5/3 F = 1.67 F
Therefore, 1.67 Faraday is required to deposit 180g of Ag from a molten silver trioxonitrate(V).
Pregunta 36 Informe
Detalles de la respuesta
Silver and Gold are classified as noble metals. These metals are known for their resistance to corrosion and oxidation in moist air, unlike most other base metals. They can be found in the earth's crust as free, uncombined elements because they do not easily react with oxygen and other elements to form compounds. This property is what distinguishes noble metals from more reactive or corrosive ones. While the term "natural metals" seems applicable in that they occur naturally, the more precise and widely accepted term for metals like Silver and Gold is "noble metals".
Pregunta 37 Informe
The pH of a 0.001 mol dm−3 of H2 SO4 is
[Log10 2 = 0.3]
Detalles de la respuesta
The question is asking about the pH of a 0.001 mol dm−3 solution of H2SO4 (sulfuric acid). To find the pH, we need to understand how sulfuric acid dissociates in water.
Step 1: Dissociation of H2SO4
Sulfuric acid, H2SO4, is a strong acid and dissociates completely in water in two steps:
1. The first dissociation: H2SO4 → H+ + HSO4-
2. The second dissociation: HSO4- → H+ + SO42-
For dilute solutions, particularly below 0.1 M, the first dissociation provides the major contribution to the H+ concentration. The second dissociation also contributes slightly to the acidity, but for simplicity and due to the dilute nature of this solution, the first step's contribution is primarily considered.
Step 2: Calculate the H+ Concentration
Since this is a strong acid and dissociates completely, for every 1 mole of H2SO4, we get 2 moles of H+. Therefore, for a 0.001 mol dm−3 solution of H2SO4, the concentration of H+ ions will be:
2 x 0.001 = 0.002 mol dm−3
Step 3: Calculate the pH
The pH is calculated using the formula: pH = -log[H+]
Substitute the H+ concentration:
pH = -log(0.002)
We know that log(10-2) = -2 and log(2) = 0.3 (as provided), so:
pH = -(log(2) + log(10-3))
pH = -(0.3 - 3)
pH = 3 - 0.3
pH = 2.7
Therefore, the pH of the 0.001 mol dm−3 H2SO4 solution is 2.7.
Pregunta 38 Informe
What accounts for the low melting and boiling points of covalent molecules?
Detalles de la respuesta
The low melting and boiling points of covalent molecules are primarily due to the presence of weak intermolecular forces between the molecules. While covalent molecules consist of atoms bonded together by strong covalent bonds, the forces between separate molecules, known as van der Waals forces or London dispersion forces, are much weaker. These weak forces require significantly less energy to overcome, which explains why covalent molecules tend to have lower melting and boiling points.
Although covalent molecules have definite shapes and possess shared electron pairs, these characteristics have little influence on the melting and boiling points. The focus is instead on how much energy is needed to separate the molecules from one another.
Covalent molecules are not typically three-dimensional structures like ionic compounds or metals which form intricate lattices and require more energy to disrupt. Thus, the primary reason for their lower melting and boiling points is the presence of weak intermolecular forces that can be more easily overcome with minimal energy input.
Pregunta 39 Informe
In the extraction of Aluminium, the silica impurity is removed by
Detalles de la respuesta
Aluminum is extracted from bauxite by electrolysis. The extraction proceeds in two stages;
1. Purification of the Bauxite: The impure bauxite is heated with sodium hydroxide solution to form soluble sodium tetrahydroxy aluminate (iii). The impurities in the ore which are iron (iii) oxide and trioxosilicate (iv) compounds are not soluble in the alkali. They are therefore filtered off as a sludge.
Aluminum hydroxide crystals is then added to filtrate, NaAl(OH)4 solution to induce the precipitation of Aluminum hydroxide.
2. The electrolysis of the pure alumina
Pregunta 40 Informe
CH3 -CH2 -OH and CH3 -O-CH3
The relationship between the two compounds above, is that they are
Detalles de la respuesta
The relationship between the two compounds is that they are isomers.
To understand why these compounds are isomers, let's break down their structures and definitions:
1. Structures of the Compounds:
2. Definitions:
Both compounds have the same molecular formula: C2H6O. However, they have different arrangements of their atoms. Ethanol has a hydroxyl group (-OH) attached to an ethyl group (CH3-CH2-), while dimethyl ether involves two methyl groups (CH3-) bonded to an oxygen atom (O). This difference in structure leads to different chemical and physical properties, despite having the same molecular formula. Hence, these two compounds are classified as isomers.
¿Te gustaría proceder con esta acción?