Wird geladen....
Drücken und Halten zum Ziehen |
|||
Hier klicken, um zu schließen |
Frage 1 Bericht
The IUPAC name for CICH2-CH2-CH2-OH is
Antwortdetails
The IUPAC name for CICH2-CH2-CH2-OH is 3-chloropropan-1-ol. To name the compound using the IUPAC nomenclature system, we start by identifying the longest continuous chain of carbon atoms that contains the functional group (-OH). In this case, the longest chain contains three carbon atoms, so the root name is propane. Next, we identify the position of the substituent (-Cl) on the chain. The substituent is attached to the third carbon atom in the chain, so the name of the compound becomes 3-chloropropane. Finally, we add the suffix -ol to indicate that the compound contains an alcohol functional group (-OH), so the complete name of the compound is 3-chloropropan-1-ol. Therefore, the correct answer is 3-chloropropan-1-ol.
Frage 2 Bericht
A certain volume of gas at 298k is heated such that its volume and pressure are now four times the original values. What is the new temperature?
Antwortdetails
We can use the ideal gas law to solve this problem, which states that PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant, and T is temperature in kelvin. If the volume and pressure are both increased by a factor of 4, then the new volume V' and new pressure P' are given by: V' = 4V P' = 4P Substituting these values into the ideal gas law, we get: (4P)(4V) = nR(T') Simplifying this equation, we get: 16PV = nRT' Dividing both sides by PV, we get: 16 = nRT' / PV Since n, R, and P are constant, we can simplify this to: 16 = T' / T Solving for T', we get: T' = 16T Therefore, the new temperature is 16 times the original temperature. Substituting T = 298 K, we get: T' = 16 x 298 K = 4768 K So the correct answer is 4768.0K.
Frage 3 Bericht
There is a large temperature interval between the melting point and the boiling point of metal because:
Antwortdetails
The correct answer is: "melting does not break the metallic bond but boiling does." The metallic bond is the force of attraction between metal atoms, which holds them together to form a solid. When a metal is heated, its temperature increases, and at a certain point, the energy provided by the heat is enough to overcome the metallic bond and cause the metal to melt. However, even in the liquid state, the metallic bond remains intact, which is why metals have a very high melting point. On the other hand, when the temperature is further increased, the energy provided by the heat becomes enough to break the metallic bond, and the metal atoms become completely detached from one another. This results in the metal boiling and turning into a gas. Because the metallic bond is much stronger than other types of intermolecular forces, such as van der Waals forces, it requires a lot of energy to break, resulting in a large temperature interval between the melting point and boiling point of metal.
Frage 4 Bericht
Chlorine is a common bleaching agent. This is not true with
Antwortdetails
Chlorine is not a common bleaching agent for wet litmus paper, wet pawpaw leaf, and most wet fabric dyes. It is commonly used as a bleaching agent for printer's ink.
Frage 5 Bericht
The dehydration of CH3 CH2 CH2 CH2 OH will give?
Frage 6 Bericht
On the basis of the electrochemical series, which of these ions will show the greater tendency to be discharged at the cathode in an electrolytic cell
Antwortdetails
The electrochemical series is a list of metals and ions arranged in order of their decreasing tendency to lose or gain electrons, and thus, their ability to act as reducing or oxidizing agents. The higher the position of a metal or ion in the electrochemical series, the greater its tendency to lose electrons and undergo oxidation, while the lower its position, the greater its tendency to gain electrons and undergo reduction. In an electrolytic cell, the cathode is the electrode where reduction occurs, meaning that cations (positively charged ions) are attracted and gain electrons to form neutral atoms or molecules. Based on the electrochemical series, the ion with the higher position in the series will have a greater tendency to gain electrons and be discharged at the cathode, while the ion with the lower position will have a lower tendency and may not be discharged at all. Among the given options, the electrochemical series order is: Cu2+ > Sn2+ > Fe2+ > Zn2+ Therefore, Cu2+ has the highest tendency to be discharged at the cathode and undergo reduction, while Zn2+ has the lowest tendency. So, in an electrolytic cell, Cu2+ will be discharged at the cathode, while Zn2+ may not be discharged at all, depending on the conditions of the cell.
Frage 7 Bericht
H2SO4 is used to remove rust on the surface of iron (picking) before electroplating. The type of reaction involved is
Antwortdetails
The type of reaction involved when using H2SO4 to remove rust on the surface of iron is a redox reaction. This is because the sulfuric acid oxidizes the iron in the rust, converting it into iron(II) sulfate, while the acid itself is reduced to sulfur dioxide. The overall reaction can be written as follows: Fe2O3(s) + 3H2SO4(aq) → Fe2(SO4)3(aq) + 3H2O(l) In this reaction, the iron in Fe2O3 is oxidized from a +3 to a +2 oxidation state, while the sulfur in H2SO4 is reduced from a +6 to a +4 oxidation state. This transfer of electrons between the reactants is what defines a redox reaction.
Frage 8 Bericht
An organic functional group which can likely decolorize ammoniacal silver nitrate is?
Antwortdetails
The organic functional group that can likely decolorize ammoniacal silver nitrate is an alkyne. When ammoniacal silver nitrate is added to a solution containing an alkyne functional group, a white or yellowish precipitate of silver acetylide is formed. Silver acetylide is a highly explosive compound and is sparingly soluble in water, causing it to appear as a white or yellowish solid precipitate. This reaction is used as a test to detect the presence of an alkyne functional group in an organic compound. In contrast, alkanes, alkenes, and alkanols do not react with ammoniacal silver nitrate, so they cannot decolorize it. Therefore, an organic functional group that can likely decolorize ammoniacal silver nitrate is an alkyne.
Frage 9 Bericht
6g of Mg was to 100cm3 of 1 moldm3 H2 SO4 . What mass of Mg remained undissolved? (Mg = 24)
Antwortdetails
The balanced chemical equation for the reaction between magnesium (Mg) and sulfuric acid (H2SO4) is: Mg + H2SO4 -> MgSO4 + H2 According to the equation, one mole of Mg reacts with one mole of H2SO4 to produce one mole of magnesium sulfate (MgSO4) and one mole of hydrogen gas (H2). Since the concentration of the sulfuric acid is 1 moldm3, this means that there is one mole of H2SO4 in every 1 liter (1000 cm3) of solution. To determine the amount of Mg that reacts with the H2SO4, we need to use stoichiometry. One mole of Mg reacts with one mole of H2SO4, so the amount of Mg that reacts with 1 moldm3 of H2SO4 is given by: 6g / 24g/mol = 0.25 mol Since the reaction is 1:1, this means that 0.25 mol of H2SO4 is consumed in the reaction. The volume of the solution is 100cm3 (0.1 dm3), so the amount of H2SO4 in the solution is: 1 mol/dm3 x 0.1 dm3 = 0.1 mol The amount of H2SO4 that remains after the reaction is: 0.1 mol - 0.25 mol = -0.15 mol This negative value means that all of the H2SO4 was consumed in the reaction, and there is excess Mg left over. The mass of Mg that remains undissolved is given by: 0.15 mol x 24g/mol = 3.6g Therefore, the correct answer is 3.6g.
Frage 10 Bericht
An organic compound which decolorizes bromine water is likely to be?
Antwortdetails
Frage 11 Bericht
The oxidation number of oxygen in BaO2 is
Antwortdetails
To determine the oxidation number of oxygen in BaO2, we can use the fact that the overall charge of a compound must be zero. Barium (Ba) is a Group 2 element and has an oxidation state of +2. The compound BaO2 has no net charge, so the sum of the oxidation states of all the atoms must be zero. Let x be the oxidation state of oxygen in BaO2. Therefore, we have: (+2) + 2(x) = 0 Solving for x, we get: x = -1 Therefore, the oxidation number of oxygen in BaO2 is -1.
Frage 12 Bericht
Which of the following statement is TRUE of the complete hydrolysis of a glyceride by sodium hydroxide?
Antwortdetails
The statement that is TRUE of the complete hydrolysis of a glyceride by sodium hydroxide is: - 3 moles of NaOH are required for each mole of glyceride. During the hydrolysis of a glyceride (a triglyceride), the ester bonds between the fatty acid chains and glycerol are broken by the action of a strong base like sodium hydroxide. This results in the formation of glycerol and the corresponding salts of fatty acids, which are commonly known as "soaps." The reaction can be represented by the following equation: Triglyceride + 3 NaOH → 3 soap + glycerol As per the equation, 3 moles of NaOH are required to hydrolyze one mole of glyceride, and 3 moles of soap and one mole of glycerol are produced. The use of concentrated sulfuric acid (H2SO4) is not essential for the completion of the reaction, but it can be used as a catalyst to speed up the reaction.
Frage 13 Bericht
A metal which can be used as sacrificial anode for preventing corrosion of length of iron pipe is
Antwortdetails
Frage 14 Bericht
Which of the following will precipitate in dil. HCl
Antwortdetails
Among the given options, only CuS will precipitate in dilute HCl. CuS is insoluble in dilute HCl, and hence it will precipitate when added to dilute HCl. However, the other options will dissolve in dilute HCl, and hence they will not precipitate. ZnS will dissolve in dilute HCl to form ZnCl2 and H2S. Na2S will react with dilute HCl to produce H2S and NaCl. FeS will dissolve in dilute HCl to form FeCl2 and H2S. Therefore, the correct answer is (4) CuS.
Frage 15 Bericht
H+ + OH− → H2 O
The equation above illustrates
Frage 16 Bericht
Which of the following is stable to heat
Antwortdetails
Out of the given options, K2CO3 is stable to heat.
Frage 18 Bericht
SO2 + O2 → 2SO3
In the reaction above, the most suitable catalyst is?
Antwortdetails
The most suitable catalyst for the given reaction is vanadium(V)oxide (V2O5). Vanadium(V)oxide is a commonly used catalyst for the oxidation of sulfur dioxide (SO2) to sulfur trioxide (SO3). The reaction is an exothermic reaction, and it occurs at high temperatures (around 450-500°C) in the presence of a catalyst. V2O5 is an effective catalyst for this reaction because it has a high surface area and can provide active sites for the reaction to occur. The vanadium ions in the V2O5 catalyst undergo redox reactions with the sulfur dioxide and oxygen molecules, which promotes the formation of sulfur trioxide. Chromium(VI)oxide and iron(III)oxide are not suitable catalysts for this reaction because they are not effective at promoting the oxidation of sulfur dioxide to sulfur trioxide. Copper(I)oxide can be used as a catalyst for the reaction, but it is not as effective as vanadium(V)oxide.
Frage 19 Bericht
which of these compounds exhibits resonance
Antwortdetails
The compound that exhibits resonance is benzene.
Frage 21 Bericht
In the extraction of iron, hot air is introduced into the blast furnace through?
Antwortdetails
In the extraction of iron, hot air is introduced into the blast furnace through tuyeres. Tuyeres are nozzles that are located at the bottom of the blast furnace, and they are used to blow hot air into the furnace. The hot air helps to burn the coke (a fuel made from coal) which provides the heat needed to melt the iron ore. The air also helps to remove the waste gases that are produced during the reaction, allowing the iron to be extracted more efficiently.
Frage 22 Bericht
A quantity of air passed through a weighted amount of alkaline pyrogallol. An increase in the weight of the pyrogallol would result from the absorption of
Antwortdetails
When air is passed through alkaline pyrogallol, the oxygen in the air is absorbed by the pyrogallol, resulting in an increase in the weight of the pyrogallol. The other gases in air, namely nitrogen, neon, and argon, do not react with pyrogallol under these conditions. Therefore, the answer is oxygen.
Frage 23 Bericht
Electrons enter into orbitals in order of increasing energy as exemplified by?
Antwortdetails
Frage 24 Bericht
A colored gas that is known to be poisonous and can readily damage the mucous lining of the lungs is?
Antwortdetails
The colored gas that is known to be poisonous and can readily damage the mucous lining of the lungs is chlorine. Chlorine is a highly reactive chemical element that is used in the production of many everyday products, such as paper, textiles, and plastics. It is also used as a disinfectant in swimming pools and water treatment plants. Inhaling chlorine gas can cause severe respiratory problems, including coughing, chest pain, and difficulty breathing. Prolonged exposure to chlorine can cause lung damage, and in extreme cases, it can be fatal. Chlorine gas is also highly irritating to the eyes, skin, and mucous membranes. It is important to handle chlorine with caution and to use appropriate protective gear, such as gloves and respiratory masks, when working with it. Proper ventilation and monitoring of chlorine levels are also essential to prevent exposure to this toxic gas.
Frage 25 Bericht
Which of the following conducts electricity
Antwortdetails
Graphite is the option that conducts electricity.
Frage 26 Bericht
The sulphide that is commonly used in coating electric fluorescent tubes is?
Antwortdetails
The sulphide commonly used in coating electric fluorescent tubes is Zinc Sulphide. Zinc Sulphide is a type of material that glows when it is exposed to ultraviolet light. When ultraviolet light is generated inside a fluorescent tube, it excites the Zinc Sulphide particles, causing them to emit visible light. This visible light is what we see as the bright light coming from the tube. So, Zinc Sulphide acts as a phosphor and helps in producing the bright light in fluorescent tubes.
Frage 28 Bericht
The function of sulphur during the vulcanization of rubber is to
Antwortdetails
The function of sulphur during the vulcanization of rubber is to form chains which bind rubber molecules together.
Frage 29 Bericht
A certain liquid has a high boiling point. It is viscous, non-toxic, and miscible with water to be hygroscopic; this liquid most likely to be
Antwortdetails
The liquid is most likely to be option number 4: CH3OHCHOH2OH, which is also known as glycerol or glycerin. Glycerol has a high boiling point of 290°C, which is much higher than the boiling points of the other options. It is also a viscous liquid, which means it is thick and sticky. Glycerol is non-toxic, and it is often used in food, pharmaceuticals, and cosmetics. Furthermore, glycerol is miscible with water, which means that it can be easily mixed with water to form a homogeneous solution. It is also hygroscopic, which means that it can absorb water from the air. These properties make glycerol a useful substance in many applications, such as as a moisturizer in skincare products or as a humectant in food processing.
Frage 30 Bericht
What is the shape of a molecule of CCl4?
Antwortdetails
The shape of a molecule of CCl4 is tetrahedral.
Frage 31 Bericht
The IUPAC nomenclature of the structure is
Antwortdetails
The IUPAC nomenclature of the structure is "2-chloro-2-methylbutane". The name is derived by first identifying the longest carbon chain, which in this case contains four carbon atoms (butane). The carbon chain is numbered from one end to the other, giving the substituents the lowest possible numbers. Starting from either end, we can see that the first carbon atom has a chlorine atom attached to it, which is represented by the prefix "chloro-". Moving along the chain, the second carbon atom has a methyl group attached to it, which is represented by the prefix "methyl-". Since the substituents are in the second position from each other, we use the prefix "di-" to indicate two substituents in this position. Finally, we use the suffix "-ane" to indicate that the molecule is an alkane. Therefore, the correct name for this molecule is "2-chloro-2-methylbutane".
Frage 32 Bericht
Which of the following will act as both oxidizing agents and reducing agents?
Antwortdetails
The oxidizing and reducing properties of a substance depend on its ability to gain or lose electrons. A substance that can gain electrons acts as an oxidizing agent, while a substance that can lose electrons acts as a reducing agent. Among the given options, both Cl2 (chlorine gas) and SO2 (sulfur dioxide) can act as both oxidizing and reducing agents depending on the reaction conditions. - Cl2 can act as an oxidizing agent when it gains electrons to form Cl- ions, and it can act as a reducing agent when it loses electrons to form Cl+ ions. For example, in the reaction Cl2 + 2KBr → 2KCl + Br2, chlorine gas is acting as an oxidizing agent since it is gaining electrons from bromide ions to form bromine gas. However, in the reaction 2Cl- + Cl2 → 2Cl2-, chlorine gas is acting as a reducing agent since it is losing electrons to form chloride ions. - SO2 can act as an oxidizing agent when it gains electrons to form sulfite ions (SO32-), and it can act as a reducing agent when it loses electrons to form sulfur trioxide (SO3). For example, in the reaction SO2 + 2H2S → 3S + 2H2O, sulfur dioxide is acting as a reducing agent since it is losing electrons to form elemental sulfur. However, in the reaction 2SO32- + O2 → 2SO42-, sulfur dioxide is acting as an oxidizing agent since it is gaining electrons to form sulfate ions. H2S (hydrogen sulfide) and NH3 (ammonia) are not likely to act as both oxidizing and reducing agents under normal conditions. H2S tends to act as a reducing agent by donating electrons to oxidizing agents, while NH3 tends to act as a reducing agent by donating electrons to oxidizing agents or as a base by accepting protons.
Frage 33 Bericht
N2 O4 ? 2NO2 (? = -ve)
From the reaction above, which of these conditions would produce the highest equilibrium yield for N2 O4 ?
Antwortdetails
The highest equilibrium yield of N2O4 would be produced at low temperature and low pressure. In a chemical reaction, the position of the equilibrium can be influenced by changing the temperature or pressure. A decrease in temperature or an increase in pressure favors the side of the reaction with the fewer moles of gas (in this case, N2O4). This means that, if the temperature is low and the pressure is low, there will be more N2O4 at equilibrium, as the reaction will shift to the right to counteract the reduction in the concentration of N2O4. So, low temperature and low pressure would produce the highest equilibrium yield of N2O4.
Frage 34 Bericht
2-methylprop-1-ene is a structural isomer of?
Frage 35 Bericht
Which of the following increases as boiling water changes to steam?
Antwortdetails
The degree of disorder of the system increases as boiling water changes to steam. When water is boiled and changes to steam, the water molecules gain energy and become more disordered, which means that the molecules move more rapidly and the entropy of the system increases. The temperature of the system also increases during this process, but the degree of disorder is the factor that specifically increases as the water changes to steam. The number of molecules and activation energy remain constant during this phase transition.
Frage 36 Bericht
Hard water is water with high concentrations of dissolved ions, in particular calcium and
Antwortdetails
Hard water is water that contains high amounts of dissolved minerals, specifically calcium and magnesium ions. These minerals come from the rocks and soil that the water flows through and can accumulate in the water as it travels to your home. When you use hard water, it can leave mineral deposits on your pipes, fixtures, and appliances, which can reduce their efficiency and lifespan. It can also make soap less effective and leave your skin feeling dry and itchy. Therefore, it is important to treat hard water if it is a problem in your area.
Frage 37 Bericht
Which of the following constitutes a mixture? I. Petroleum II. Rubber latex III. Vulcanizer’s solution IV. Carbon (iv) sulphide
Antwortdetails
Frage 38 Bericht
What volume of (dm3 ) of water will be added to 10dm3 of 2.0 mol/dm3 HCL acid solution to give a final solution of 0.5 mol/dm3 ?
Antwortdetails
Frage 39 Bericht
A sample of gas with an initial volume of 2.5 dm3 is heated and then allowed to expand to 7.5 dm3 at constant at pressure. What is the ratio of the final temperature of the initial absolute temperature?
Antwortdetails
According to Charles's Law, the ratio of the initial and final temperatures is equal to the ratio of the initial and final volumes at constant pressure. The ratio of the final volume to the initial volume is: Vf / Vi = 7.5 dm3 / 2.5 dm3 = 3 Therefore, the ratio of the final temperature to the initial temperature is also 3: Tf / Ti = Vf / Vi = 3 So the answer is 3:1.
Frage 40 Bericht
30 cm3 of oxygen at 10 atmosphere pressure is placed in a 20 dm3 container. Calculate the new pressure if the temperature is kept constant.
Antwortdetails
Given:
First, convert all volumes to the same units. Since 1 dm3dm3 is 1000 cm3cm3:
𝑉2=20 dm3=20×1000 cm3=20000 cm3V2=20dm3=20×1000cm3=20000cm3
Now, using Boyle's Law:
𝑃1𝑉1=𝑃2𝑉2P1V1=P2V2
Substitute the known values into the equation:
10×30=𝑃2×2000010×30=P2×20000
300=𝑃2×20000300=P2×20000
Solve for 𝑃2P2:
𝑃2=30020000P2=20000300
𝑃2=0.015 atmospheresP2=0.015atmospheres
Therefore, the new pressure if the temperature is kept constant is:
Möchten Sie mit dieser Aktion fortfahren?