Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
Burning magnesium ribbon in air removes which of the following
(i) oxygen (ii) nitrogen (iii) argon and (iv) carbon(iv)oxide?
Answer Details
Burning magnesium ribbon in air will remove oxygen (option i) from the air, but not nitrogen (option ii), argon (option iii), or carbon dioxide (option iv). When magnesium burns, it reacts with oxygen in the air to form magnesium oxide. The reaction can be represented by the following equation: 2Mg(s) + O2(g) → 2MgO(s) The magnesium in the ribbon combines with oxygen in the air to form solid magnesium oxide. This reaction is exothermic, which means that it releases heat and light energy. So, when magnesium ribbon is burned in air, it consumes the oxygen in the air to form magnesium oxide. However, nitrogen, argon, and carbon dioxide are not chemically reactive with magnesium, and therefore are not removed from the air by the burning of magnesium ribbon. In summary, the correct option is (i) only - burning magnesium ribbon in air removes oxygen only.
Question 2 Report
In the reaction between sodium hydroxide and tetraoxosulphate (VI) solutions, what volume of 0.5 molar sodium hydroxide would exactly neutralize 10cm3 of 1.25 molar tetraoxosulphate (vi) acid?
Answer Details
Equation of reaction : 2NaOH + H2 SO4 → Na2 SO4 + 2H2 O
Concentration of a base, CB = 0.5M
Volume of acid, VA = 10cm3
Concentration of an acid, CA = 1.25M
Volume of base, VB = ?
Recall:
CAVACBVB=nAnB
... (1)
N.B: From the equation,
nAnB=12
From (1)
1.25×100.5×VB=12
12.50.5VB=12
25 = 0.5VB
VB = 50.0 cm3
Question 3 Report
2-methylprop-1-ene is an isomer of
Answer Details
2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene. An isomer is a molecule that has the same molecular formula as another molecule, but a different arrangement of atoms. In this case, 2-methylprop-1-ene has the molecular formula C4H8, and so do 3-methyl but-1-ene and 2-methyl but-1-ene. The difference between these three molecules is in the arrangement of the carbon and hydrogen atoms. 2-methylprop-1-ene has a branched structure with a double bond between the first and second carbon atoms. 3-methyl but-1-ene is also a branched molecule, but the double bond is between the second and third carbon atoms. Similarly, 2-methyl but-1-ene has a double bond between the first and second carbon atoms, but it has a different branching pattern. On the other hand, pent-2-ene has five carbon atoms, so it has a different molecular formula than 2-methylprop-1-ene. Therefore, 2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene, but not of pent-2-ene, because it has the same molecular formula and a different arrangement of atoms compared to the other two isomers.
Question 4 Report
Which of the following could not be alkane?
Answer Details
An alkane is a type of hydrocarbon with only single bonds between the carbon atoms. It follows the general formula CnH2n+2, where "n" is the number of carbon atoms in the molecule. To determine whether a molecule is an alkane or not, we can calculate its molecular formula and check if it fits the general formula of alkane. Out of the given options, the third one (C7H14) cannot be an alkane. To see why, let's use the general formula of alkane, which is CnH2n+2. For C7H14 to be an alkane, it should have 2n+2 = 2(7) + 2 = 16 hydrogen atoms. However, C7H14 has only 14 hydrogen atoms, which means it does not follow the general formula of alkane. Therefore, C7H14 cannot be an alkane. The other options are as follows: - C4H10: This is butane, which is an alkane with four carbon atoms. - C5H12: This is pentane, which is an alkane with five carbon atoms. - C8H18: This is octane, which is an alkane with eight carbon atoms. In summary, the molecule C7H14 cannot be an alkane because it does not follow the general formula of alkane, while the other options are all examples of alkanes.
Question 5 Report
A certain hydrocarbon on complete combustion at s.t.p produced 89.6dm3 of CO2 and 54g of water. The hydrocarbon should be
Answer Details
In the question above an Hydrocarbon combust to give CO2 and H20
Let Hydrocarbon be
CxHy + x+Y/4O2= xCO2 + Y/2H2O
Mass of C0=44g and H2O=18g
at STP vol= 22.4
Therefore, 1mole of CO2 contains 44g and 22.4dm³ at STP
1mole = 22.4dm³
xmole = 89.6dm³
Cross multiplying x=89.6/22.4 =4mole of CO2 produce
1mole of H2O = 18g
Xmole = 56g
Cross multiplying
X = 56/18 = 3mole of H20
Then....
CxHy + X + y/4O2 = 4CO2+ 3H2O
Balancing
C4H6 + 6O2 = 4CO2 + 3H2O
Question 7 Report
How many electrons will be found in the nucleus of an atom with mass number 23 and 17 neutrons?
Answer Details
Electrons are not found in the nucleus of an atom. The nucleus of an atom only contains protons and neutrons, while electrons are located outside the nucleus in the electron cloud. The mass number of an atom is equal to the sum of the number of protons and the number of neutrons in the nucleus. Therefore, if an atom has a mass number of 23 and 17 neutrons, then the number of protons in the nucleus can be calculated as: Protons = Mass number - Neutrons Protons = 23 - 17 Protons = 6 This means that the nucleus of the atom contains 6 protons. The number of electrons in a neutral atom is equal to the number of protons, so the atom also contains 6 electrons in the electron cloud surrounding the nucleus. In summary, the answer is that there are 6 protons and 6 electrons in the atom.
Question 8 Report
The following are isoelectronic ions except
Answer Details
Two or more ions are said to be isoelectronic if they have the same electronic structure and the same number of valence electrons.
Na+
= 10 electrons = 2, 8
Mg2+
= 10 electrons = 2,8
O2−
= 10 electrons = 2,8
Si2+
= 12 electrons = 2,8,2
⟹
Si2+
is not isoelectronic with the rest.
Question 9 Report
The two ions responsible for hardness in water are
Answer Details
The ions responsible for hardness in water are Ca2+ and/or Mg2+. Hardness in water refers to the presence of calcium and magnesium ions, which are commonly found in natural water sources such as rivers, lakes, and groundwater. These ions can react with soap to form insoluble compounds, reducing the effectiveness of soap and causing scaling in pipes and appliances. The hardness of water is often measured in terms of the concentration of calcium and magnesium ions, expressed as calcium carbonate equivalents (CaCO3).
Question 10 Report
When ammonia and hydrogen ion bond together to form ammonium ion, the bond formed is called
Answer Details
When ammonia and hydrogen ion go into bonding, they form ammonium ion by combining with a dative/coordinate covalent bond.
Question 11 Report
The part of the total energy of a system that accounts for the useful work done in a system is known as
Answer Details
The part of the total energy of a system that accounts for the useful work done in a system is known as "Gibbs free energy". Gibbs free energy is a thermodynamic property that represents the amount of energy that can be converted into useful work in a system. It takes into account both the energy of the system and the entropy, or disorder, of the system. In other words, Gibbs free energy is a measure of the energy available to do work, taking into account the energy that is unavailable due to entropy. In simple terms, if a system has a high Gibbs free energy, it has a lot of energy available to do work, and if a system has a low Gibbs free energy, it has little energy available to do work.
Question 12 Report
The IUPAC nomenclature of the compound
H3 C - CH(CH3 ) - CH(CH3 ) - CH2 - CH3
Question 13 Report
The cost of discharging 6.0g of a divalent metal, X from its salt is ₦12.00. What is the cost of discharging 9.0g of a trivalent metal, Y from its salt under the same condition?
[X = 63, Y = 27, 1F = 96,500C]
Answer Details
For X: X2+
+ 2e−
→
X
2F = 63g
xF = 6g
x = 6×263=421F
421
F = N12.00
1F = 12421
= N63.00
1F is equivalent to N63.00.
For Y: Y3+
+ 3e−
→
Y
3F = 27g
xF = 9g
x = 3×927
= 1F
1F = N63.00
Question 14 Report
Which of the following statements does not show Rutherford's account of Nuclear Theory? An atom contains a region
Answer Details
Rutherford's account of Nuclear theory does not include the fact that atoms contain a massive region and cause deflection of from projectiles.
Question 15 Report
The heat of formation of ethene, C2 H4 is 50 kJmol−1 , and that of ethane, C2 H6 is -82kJmol−1 . Calculate the heat evolved in the process:
C2 H4 + H2 → C2 H6
Answer Details
The heat evolved in a chemical reaction can be calculated by subtracting the heat of formation of the reactants from the heat of formation of the products. In this case, the reactants are ethene (C2H4) and hydrogen (H2), and the product is ethane (C2H6). The heat of formation of ethene is 50 kJ/mol and that of hydrogen is 0 kJ/mol (because hydrogen is a reference element). The heat of formation of ethane is -82 kJ/mol. So, the heat evolved in the reaction is given by: Heat evolved = (Heat of formation of products) - (Heat of formation of reactants) = (-82 kJ/mol) - (50 kJ/mol + 0 kJ/mol) = -82 kJ/mol - 50 kJ/mol = -132 kJ/mol. Therefore, the heat evolved in the process is -132 kJ.
Question 16 Report
For the general equation of the nature
XP + yQ ⇌ mR + nS, the expression for the equilibrium constant is
Answer Details
The expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is: Kc = [R]m[S]n / [P]x[Q]y where Kc is the equilibrium constant, [R] and [S] are the concentrations of the products, and [P] and [Q] are the concentrations of the reactants, all raised to the stoichiometric coefficients (m, n, x, y) in the balanced equation. This equation is known as the equilibrium constant expression and it represents the ratio of the concentrations of the products and reactants at equilibrium for a particular chemical reaction. The equilibrium constant is a measure of how far a reaction proceeds towards completion, with a larger value indicating a greater extent of reaction. The equilibrium constant expression is derived from the law of mass action, which states that the rate of a chemical reaction is proportional to the product of the concentrations of the reactants raised to their stoichiometric coefficients. At equilibrium, the rates of the forward and reverse reactions are equal, and the equilibrium constant expression represents the ratio of the rate constants for these two reactions. Therefore, the correct expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is Kc = [R]m[S]n / [P]x[Q]y.
Question 17 Report
Which important nitrogen-containing compound is produced in Haber's process?
Answer Details
The important nitrogen-containing compound that is produced in Haber's process is NH3, which is also known as ammonia. Haber's process is a chemical process used to produce ammonia by reacting nitrogen gas (N2) and hydrogen gas (H2) under high pressure and temperature in the presence of an iron catalyst. The reaction between nitrogen and hydrogen produces ammonia as the main product, along with some nitrogen and hydrogen gases that do not react. NH3 is an important compound that is widely used in industry for the production of fertilizers, plastics, and other chemical products. It is also used as a cleaning agent, a refrigerant, and a fuel for engines. In addition, NH3 is an essential compound for life, as it is a key component of amino acids, which are the building blocks of proteins.
Question 18 Report
Which of the following is a physical change?
Answer Details
A physical change refers to a change in a substance that does not result in a change in its chemical composition. Out of the options provided, freezing ice cream is a physical change. This is because when ice cream is frozen, it changes from a liquid state to a solid state without any chemical reaction occurring. Exposing white phosphorus to air is a chemical change, as it reacts with oxygen in the air to form a new substance, phosphorus oxide. Burning kerosene is also a chemical change, as it undergoes combustion to form new substances, such as carbon dioxide and water vapor. Dissolving calcium in water is a physical change, as it simply involves the physical mixing of two substances without any chemical reaction occurring. Therefore, the only option that is a physical change is freezing ice cream.
Question 19 Report
Which of the following statements about catalyst is false?
Answer Details
The false statement about catalysts is: "catalysts do not alter the mechanism of the reaction and never appear in the rate law." Catalysts are substances that speed up chemical reactions without being consumed in the process. They achieve this by reducing the activation energy needed for the reaction to occur. Enzymes are a type of biological catalysts. In a chemical reaction, a catalyst is not consumed and does not appear in the overall balanced equation. However, catalysts can alter the mechanism of a reaction by providing an alternative pathway with a lower activation energy. This alternative pathway can have a different rate-determining step, which means that the presence of the catalyst can change the rate law of the reaction. Therefore, the statement that catalysts do not alter the mechanism of the reaction and never appear in the rate law is false.
Question 20 Report
The IUPAC name for CH3 CH2 COOCH2 CH3 is
Answer Details
The IUPAC name for the given molecule is ethyl propanoate. To arrive at the IUPAC name, we first identify the longest continuous chain of carbon atoms, which in this case is a 4-carbon chain (propane). We then identify and name the substituent groups attached to this chain, which are a methyl group (CH3) attached to the second carbon atom and an ethoxy group (OC2H5) attached to the third carbon atom. The ethoxy group is named as an ethyl group, and the entire molecule is named as ethyl propanoate, following the standard IUPAC naming conventions for esters.
Question 21 Report
Hydrogen diffused through a porous plug
Answer Details
Hydrogen gas (H2) diffuses faster than oxygen gas (O2) through a porous plug. This is because the rate of diffusion of a gas through a porous plug is inversely proportional to the square root of its molar mass. Since the molar mass of hydrogen (2 g/mol) is much smaller than that of oxygen (32 g/mol), the rate of diffusion of hydrogen through a porous plug is much faster than that of oxygen. To be more specific, the ratio of the diffusion rates of two gases through a porous plug is given by the equation: Rate of diffusion of gas A / Rate of diffusion of gas B = √(Molar mass of gas B / Molar mass of gas A) Using the molar masses of hydrogen and oxygen, we get: Rate of diffusion of hydrogen / Rate of diffusion of oxygen = √(32 g/mol / 2 g/mol) = √16 = 4 Therefore, hydrogen diffuses through a porous plug four times as fast as oxygen. Thus, the correct answer is: four times as fast as oxygen.
Question 22 Report
If acidified Potassium Dichromate(VI) (K2 Cr2 O7 ) acts as oxidizing agent, color changes from
Answer Details
Potassium Dichromate (VI), when it is acidified, acts as an oxidizing agent. When this happens, the color changes from orange to green. This is because the orange color of the potassium dichromate is due to the presence of Cr(VI) ions, which are oxidized to Cr(III) ions. The green color that is produced is due to the formation of chromium(III) ions. In this reaction, the dichromate ions are being oxidized, which means that they are losing electrons, and the chromium ions are being reduced, which means that they are gaining electrons. The transfer of electrons causes the color change from orange to green.
Question 23 Report
Which of the following metals is the most essential in the regulation of blood volume, blood pressure and osmotic equilibrium?
Answer Details
The metal that is most essential in the regulation of blood volume, blood pressure, and osmotic equilibrium is sodium. Sodium is a key electrolyte that helps maintain the balance of fluids in the body, including blood volume and blood pressure. Sodium ions are positively charged and are attracted to negatively charged ions, such as chloride (Cl-) and bicarbonate (HCO3-), which together help regulate the pH of the blood. Sodium is also essential for maintaining osmotic equilibrium, which refers to the balance of solutes between cells and the extracellular fluid. Osmotic equilibrium is critical for proper cellular function and is regulated by the movement of water and electrolytes, including sodium, in and out of cells. While the other metals listed (zinc, manganese, and iron) are important for various functions in the body, such as enzyme activity and oxygen transport, they are not directly involved in regulating blood volume, blood pressure, and osmotic equilibrium in the same way that sodium is. Therefore, the answer is not options 1, 2, or 4, and the correct answer is: sodium.
Question 24 Report
A synthetic rubber is obtained from the polymerization of
Answer Details
A synthetic rubber is obtained from the polymerization of isoprene. Isoprene is a type of hydrocarbon that can be polymerized, or chemically joined together, to form long chains. This process is called polymerization, and the resulting material is called a polymer. When isoprene is polymerized, it forms a synthetic rubber, which is a type of polymer that is used in a wide range of products, including tires, hoses, and adhesives. Synthetic rubber offers several advantages over natural rubber, including improved durability and resistance to heat, ozone, and chemicals.
Question 25 Report
Which process(es) is/are involved in the turning of starch iodide paper blue-black by chlorine gas?
Answer Details
The process involved in the turning of starch iodide paper blue-black by chlorine gas is option number 3: chlorine oxidizes the iodide ion to produce iodine which attacks the starch to give the blue-black color. When chlorine gas comes in contact with iodide ions on the starch iodide paper, it oxidizes the iodide ion to form iodine. The iodine that is produced in this reaction is then able to react with the starch present on the paper to form a blue-black complex. This blue-black complex is formed due to the arrangement of the starch molecules and the iodine atoms in a way that causes them to absorb light at a specific wavelength, giving the blue-black color. Therefore, the blue-black color that is observed on the starch iodide paper is due to the reaction between iodine and starch, which is made possible by the oxidation of iodide ions by chlorine gas.
Question 26 Report
Consider the reaction
A(s) + 2B(g) → 2C(aq) + D(g)
What will be the effect of a decrease in pressure on the reaction?
Answer Details
Given: The equation below
A(s) + 2B(g) → 2C(aq) + D(g)
Since we have a higher number of moles of gaseous species on the LHS, i.e 2, a decrease in pressure will favor the forward reaction.
Question 28 Report
Which of the following factors will speed up the rate of evolution of carbon (iv) oxide in the reaction below?
2HCl + CaCO3 → CaCl2 + H2 O + CO2
Answer Details
The following factors increase a reaction rate
- Increase in concentration of reactants
- Increase in temperature
- Addition of catalyst
- Increase in the surface area of reactant(s)
Question 29 Report
Elements in the periodic table are arranged in the order of their
Answer Details
Elements in the periodic table are arranged in the order of their atomic numbers. The atomic number of an element is the number of protons in the nucleus of an atom of that element. The elements are arranged in order of increasing atomic number from left to right and from top to bottom in the periodic table. The elements in each row, also known as a period, have the same number of electron shells, while the elements in each column, also known as a group or family, have the same number of valence electrons. This arrangement makes it possible to predict the chemical and physical properties of an element based on its position in the periodic table. Therefore, the correct answer is: - atomic numbers
Question 30 Report
The combustion of carbon(ii)oxide in oxygen can be represented by equation.
2CO + O2 ? 2CO2
Calculate the volume of the resulting mixture at the end of the reaction if 50cm3 of carbon(ii)oxide was exploded in 100cm3 of oxygen
Answer Details
Question 31 Report
X is a substance which liberates CO2 on treatment with concentrated H2 SO4 . A warm solution of X can decolorize acidified KMnO4 . X is
Answer Details
It should be noted that for X to liberate CO2
, X must be a carbonate or an oxalate. Since X decolorizes KMnO4
, X must be an oxalate.
Therefore, X is H2
C2
O4
.
Question 32 Report
Which of the following conditions will most enhance the spontaneity of a reaction?
Answer Details
The condition that will most enhance the spontaneity of a reaction is when ΔH is negative (i.e., the reaction releases heat) and ΔS is positive (i.e., the reaction increases the disorder or randomness of the system). This is because a negative ΔH indicates that the reaction releases energy, which is favorable for a spontaneous reaction, while a positive ΔS indicates that the system becomes more disordered, which is also favorable for spontaneous reactions. Among the given options, the first condition of a negative and greater ΔH than ΔS is the best option for enhancing the spontaneity of a reaction. The other options have either a positive ΔH or a zero ΔS, which is not favorable for spontaneous reactions.
Question 33 Report
Methane is prepared in the laboratory by heating a mixture of sodium ethanoate with soda lime. The chemical constituent(s) of soda lime is/are
Answer Details
The chemical constituent of soda lime used to prepare methane in the laboratory is Ca(OH)2 (calcium hydroxide) and NaOH (sodium hydroxide). Soda lime is a mixture of these two compounds. When sodium ethanoate (NaC2H3O2) is heated with soda lime, it undergoes a reaction known as the Kolbe's reaction, which produces methane gas (CH4) as one of the products. The reaction can be represented as follows: 2NaC2H3O2 + 2Ca(OH)2 → 2CH4 + 2NaOH + 2CaCO3 In this reaction, the sodium ethanoate reacts with the calcium hydroxide to form calcium acetate (Ca(C2H3O2)2) and sodium hydroxide. The calcium acetate then decomposes to produce methane gas and calcium carbonate (CaCO3), which is a solid precipitate. Therefore, the chemical constituents of soda lime used to prepare methane in the laboratory are calcium hydroxide (Ca(OH)2) and sodium hydroxide (NaOH).
Question 35 Report
Which of the following pollutants will lead to the depletion of ozone layer?
Answer Details
The pollutant that leads to the depletion of the ozone layer is chlorofluorocarbon (CFCs). CFCs are man-made chemicals that were widely used in the past as refrigerants, solvents, and propellants. When CFCs are released into the atmosphere, they rise into the stratosphere, where they come into contact with ozone molecules. The chlorine atoms in CFCs react with ozone, breaking apart the ozone molecules and causing a reduction in the overall amount of ozone in the stratosphere. This process continues until all of the ozone-depleting chlorine atoms have been depleted. The resulting decrease in ozone in the stratosphere leads to an increase in the amount of harmful ultraviolet radiation that reaches the Earth's surface, which can have negative impacts on human health and the environment.
Question 36 Report
Hydrocarbons which will react with Tollen's reagent conform to the general formula
Question 37 Report
Which of the following pairs cannot be represented with a chemical formula?
Answer Details
The pair that cannot be represented with a chemical formula is air and bronze. Air is a mixture of several gases, primarily nitrogen (N₂) and oxygen (O₂), with small amounts of other gases such as argon (Ar), carbon dioxide (CO₂), and neon (Ne). Since air is a mixture and not a pure substance, it cannot be represented by a chemical formula. Bronze, on the other hand, is an alloy composed mainly of copper (Cu) and tin (Sn) with small amounts of other metals. The composition of bronze can vary depending on the specific alloy, but it can be represented by a chemical formula such as CuSn. Sodium chloride (NaCl) is a compound composed of sodium (Na) and chlorine (Cl) in a fixed ratio of 1:1, and it can be represented by a chemical formula. Similarly, copper (Cu) and sodium chloride (NaCl) can each be represented by a chemical formula. Cu is an element, so its chemical formula is simply its symbol, while NaCl is a compound with a fixed ratio of sodium and chlorine atoms. Caustic soda (sodium hydroxide, NaOH) and washing soda (sodium carbonate, Na₂CO₃) are both compounds that can be represented by chemical formulas. NaOH consists of one sodium atom, one oxygen atom, and one hydrogen atom, while Na₂CO₃ consists of two sodium atoms, one carbon atom, and three oxygen atoms.
Question 38 Report
Consider the reaction: A + 2B(g)⇌ 2C + D(g) (Δ H = +ve)
What will be the effect of decrease in temperature on the reaction?
Answer Details
The effect of a decrease in temperature on the reaction will be that the rate of the backward reaction will increase. In a chemical reaction, the rate of the forward and backward reactions are determined by the activation energy required for each step and the temperature of the system. When the temperature is decreased, the rate of the reaction decreases, and the rate of the backward reaction increases. This shift in the rate of the backward reaction means that there will be a shift in the position of the equilibrium of the reaction. As the rate of the backward reaction increases, the concentration of the reactants will increase and the concentration of the products will decrease, leading to a decrease in the overall yield of the products. In this reaction, as ΔH (the change in enthalpy) is positive, which means that the reaction is endothermic. Endothermic reactions absorb heat from the surroundings to proceed, so a decrease in temperature will lead to a decrease in the rate of the forward reaction and an increase in the rate of the backward reaction. This shift in the rate of the backward reaction will shift the position of the equilibrium of the reaction to the left, leading to an increase in the concentration of the reactants and a decrease in the concentration of the products.
Question 39 Report
An element Z contains 80% of 168 Z and 20% of 188 Z. Its relative atomic mass is
Answer Details
R.A.M of Z = 16(80100)+18(20100)
= 12.8+3.6
= 16.4
Question 40 Report
What mass of magnesium would be obtained by passing a current of 2 amperes for 2 hours, through molten magnesium chloride?
[1 faraday = 96500C, Mg = 24]
Answer Details
Current (I) = 2A; Time (t) = 2 hours = 7200 secs
Q = It
= 2 x 7200 = 14400C
1 F = 96500C
x = 14400C
x = 1440096500
= 0.15F
Mg2+
+ 2e−
→
Mg
2F →
24g
0.15F →
x
2x = 24 x 0.15
x = 24×0.152
= 1.8g
Would you like to proceed with this action?