Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 2 Report
Which important nitrogen-containing compound is produced in Haber's process?
Answer Details
The important nitrogen-containing compound that is produced in Haber's process is NH3, which is also known as ammonia. Haber's process is a chemical process used to produce ammonia by reacting nitrogen gas (N2) and hydrogen gas (H2) under high pressure and temperature in the presence of an iron catalyst. The reaction between nitrogen and hydrogen produces ammonia as the main product, along with some nitrogen and hydrogen gases that do not react. NH3 is an important compound that is widely used in industry for the production of fertilizers, plastics, and other chemical products. It is also used as a cleaning agent, a refrigerant, and a fuel for engines. In addition, NH3 is an essential compound for life, as it is a key component of amino acids, which are the building blocks of proteins.
Question 3 Report
Hydrocarbons which will react with Tollen's reagent conform to the general formula
Question 4 Report
The emission of two successive beta particles from the nucleus 3215P will produce
Answer Details
Question 5 Report
Which of the following conditions will most enhance the spontaneity of a reaction?
Answer Details
The condition that will most enhance the spontaneity of a reaction is when ΔH is negative (i.e., the reaction releases heat) and ΔS is positive (i.e., the reaction increases the disorder or randomness of the system). This is because a negative ΔH indicates that the reaction releases energy, which is favorable for a spontaneous reaction, while a positive ΔS indicates that the system becomes more disordered, which is also favorable for spontaneous reactions. Among the given options, the first condition of a negative and greater ΔH than ΔS is the best option for enhancing the spontaneity of a reaction. The other options have either a positive ΔH or a zero ΔS, which is not favorable for spontaneous reactions.
Question 6 Report
The shapes of water, ammonia, carbon (iv) oxide and methane are respectively
Answer Details
Question 7 Report
The IUPAC nomenclature of the compound
H3 C - CH(CH3 ) - CH(CH3 ) - CH2 - CH3
Question 8 Report
When ammonia and hydrogen ion bond together to form ammonium ion, the bond formed is called
Answer Details
When ammonia and hydrogen ion go into bonding, they form ammonium ion by combining with a dative/coordinate covalent bond.
Question 9 Report
A synthetic rubber is obtained from the polymerization of
Answer Details
A synthetic rubber is obtained from the polymerization of isoprene. Isoprene is a type of hydrocarbon that can be polymerized, or chemically joined together, to form long chains. This process is called polymerization, and the resulting material is called a polymer. When isoprene is polymerized, it forms a synthetic rubber, which is a type of polymer that is used in a wide range of products, including tires, hoses, and adhesives. Synthetic rubber offers several advantages over natural rubber, including improved durability and resistance to heat, ozone, and chemicals.
Question 10 Report
The hybridization in the compound CH3−CH2−C≡H is
Answer Details
The hybridization in a and b is sp3 hybridization while in c and d is sp hybridization.
Question 11 Report
The IUPAC name for CH3 CH2 COOCH2 CH3 is
Answer Details
The IUPAC name for the given molecule is ethyl propanoate. To arrive at the IUPAC name, we first identify the longest continuous chain of carbon atoms, which in this case is a 4-carbon chain (propane). We then identify and name the substituent groups attached to this chain, which are a methyl group (CH3) attached to the second carbon atom and an ethoxy group (OC2H5) attached to the third carbon atom. The ethoxy group is named as an ethyl group, and the entire molecule is named as ethyl propanoate, following the standard IUPAC naming conventions for esters.
Question 13 Report
What volume of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
[Na = 23, N = 14, O = 16]
Answer Details
To calculate the volume of a solution, we need to use the formula: moles of solute = concentration x volume First, let's find the number of moles of sodium trioxonitrate (V) in 5g of the solute. The molar mass of NaNO3 is: Na = 23 N = 14 3 x O = 3 x 16 = 48 Molar mass = 23 + 14 + 48 = 85 g/mol The number of moles of NaNO3 in 5g is: moles = mass / molar mass = 5 / 85 = 0.0588 moles Now, we can use the formula above to find the volume of the solution: moles of solute = concentration x volume volume = moles of solute / concentration volume = 0.0588 moles / 0.100 M volume = 0.588 litres Therefore, the correct answer is 0.588 litres of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
Question 14 Report
Which of the following will give a precipitate with an aqueous solution of copper (I) chloride?
Answer Details
Question 15 Report
When the end alkyl groups of ethyl ethanoate are interchanged, the compound formed is
Answer Details
The compound formed when the end alkyl groups of ethyl ethanoate are interchanged is ethyl propanoate. This is because ethyl ethanoate consists of two parts: the "ethyl" group and the "ethanoate" group. The ethyl group is a two-carbon chain, and the ethanoate group is a combination of a one-carbon chain and a carbonyl group (C=O) that is also attached to an oxygen atom. When the end alkyl groups are interchanged, the "ethyl" group is moved from the second carbon to the first carbon of the ethanoate group, and the "propanoate" group is formed. The "propanoate" group consists of a three-carbon chain and the carbonyl group. Therefore, the resulting compound is ethyl propanoate, which has a chemical formula of CH3CH2COOCH2CH3. This compound is commonly used as a flavoring agent and has a fruity odor reminiscent of pears.
Question 16 Report
The two ions responsible for hardness in water are
Answer Details
The ions responsible for hardness in water are Ca2+ and/or Mg2+. Hardness in water refers to the presence of calcium and magnesium ions, which are commonly found in natural water sources such as rivers, lakes, and groundwater. These ions can react with soap to form insoluble compounds, reducing the effectiveness of soap and causing scaling in pipes and appliances. The hardness of water is often measured in terms of the concentration of calcium and magnesium ions, expressed as calcium carbonate equivalents (CaCO3).
Question 17 Report
For the general equation of the nature
XP + yQ ⇌ mR + nS, the expression for the equilibrium constant is
Answer Details
The expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is: Kc = [R]m[S]n / [P]x[Q]y where Kc is the equilibrium constant, [R] and [S] are the concentrations of the products, and [P] and [Q] are the concentrations of the reactants, all raised to the stoichiometric coefficients (m, n, x, y) in the balanced equation. This equation is known as the equilibrium constant expression and it represents the ratio of the concentrations of the products and reactants at equilibrium for a particular chemical reaction. The equilibrium constant is a measure of how far a reaction proceeds towards completion, with a larger value indicating a greater extent of reaction. The equilibrium constant expression is derived from the law of mass action, which states that the rate of a chemical reaction is proportional to the product of the concentrations of the reactants raised to their stoichiometric coefficients. At equilibrium, the rates of the forward and reverse reactions are equal, and the equilibrium constant expression represents the ratio of the rate constants for these two reactions. Therefore, the correct expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is Kc = [R]m[S]n / [P]x[Q]y.
Question 18 Report
How many alkoxyalkanes can be obtained from the molecular formula C4 H10 O?
Answer Details
Alkoxyalkanes have a general formula of R-O-R', where R and R' are alkyl groups. From the given molecular formula C4H10O, we can see that there are four carbon atoms, so the longest possible alkyl group is butyl (C4H9-). To form alkoxyalkanes, we need to attach an oxygen atom to the alkyl group. This can be done in three ways - by attaching the oxygen to one of the terminal carbon atoms (forming a primary alcohol), by attaching it to one of the central carbon atoms (forming a secondary alcohol), or by attaching it to the carbonyl carbon atom (forming an ester). So, we can obtain a maximum of three alkoxyalkanes from the given molecular formula. However, we need to take into account that there are different isomers possible for each type of alcohol or ester, depending on which carbon atom the oxygen is attached to. Therefore, the correct answer is (at least) 3.
Question 19 Report
If acidified Potassium Dichromate(VI) (K2 Cr2 O7 ) acts as oxidizing agent, color changes from
Answer Details
Potassium Dichromate (VI), when it is acidified, acts as an oxidizing agent. When this happens, the color changes from orange to green. This is because the orange color of the potassium dichromate is due to the presence of Cr(VI) ions, which are oxidized to Cr(III) ions. The green color that is produced is due to the formation of chromium(III) ions. In this reaction, the dichromate ions are being oxidized, which means that they are losing electrons, and the chromium ions are being reduced, which means that they are gaining electrons. The transfer of electrons causes the color change from orange to green.
Question 20 Report
Which of the following sets of operation will completely separate a mixture of sodium chloride, sand and iodine?
Answer Details
The set of operations that will completely separate a mixture of sodium chloride, sand, and iodine is: - filtration, to separate the sand and iodine from the sodium chloride - evaporation to dryness, to concentrate the sodium chloride solution and remove any remaining water - sublimation, to separate the iodine as a solid from the remaining sodium chloride By using these operations, you can separate each component of the mixture into separate, pure forms. The order of the operations is important because each step must be done in a way that effectively separates the components and does not interfere with subsequent steps.
Question 21 Report
A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% oxygen. If the molar mass of the compound is 180. Find the molecular formula.
[H = 1, C = 12, O = 16]
Answer Details
The molecular formula of a compound is determined by the number of atoms of each element present in the molecule. To find the molecular formula, we need to determine the number of atoms of each element in the compound. First, we convert the percent composition to grams. For example, 40.0% carbon means 40.0 g of carbon per 100 g of compound. Then we divide the number of grams of each element by the molar mass of each element. For example, 40.0 g of carbon divided by the molar mass of carbon (12 g/mol) gives us 3.33 mol of carbon. Next, we convert the number of moles of each element to the number of atoms by multiplying the number of moles by Avogadro's number (6.022 x 10^23 atoms/mol). Finally, we balance the numbers of atoms of each element by dividing them by the smallest number of atoms of all the elements and rounding to the nearest whole number. In this case, the smallest number of atoms is 2, which is the number of hydrogen atoms. So, we divide the number of atoms of carbon and oxygen by 2 to balance the numbers of atoms of all the elements. Therefore, the molecular formula of the compound is C6H12O6.
Question 22 Report
SO3 is not directly dissolved in water in the industrial preparation of H2 SO4 by the contact process because
Answer Details
Question 23 Report
The oxidation state(s) of nitrogen in ammonium nitrite is/are
Answer Details
Ammonium nitrite = NH4
NO2
NH+4
: Let the oxidation number of Nitrogen = x
x + 4 = 1 ⟹
x = 1 - 4
x = -3
NO−2
: x - 4 = -1
x = -1 + 4 ⟹
x = +3.
The oxidation numbers for Nitrogen in Ammonium Nitrite = -3, +3.
Question 24 Report
Burning magnesium ribbon in air removes which of the following
(i) oxygen (ii) nitrogen (iii) argon and (iv) carbon(iv)oxide?
Answer Details
Burning magnesium ribbon in air will remove oxygen (option i) from the air, but not nitrogen (option ii), argon (option iii), or carbon dioxide (option iv). When magnesium burns, it reacts with oxygen in the air to form magnesium oxide. The reaction can be represented by the following equation: 2Mg(s) + O2(g) → 2MgO(s) The magnesium in the ribbon combines with oxygen in the air to form solid magnesium oxide. This reaction is exothermic, which means that it releases heat and light energy. So, when magnesium ribbon is burned in air, it consumes the oxygen in the air to form magnesium oxide. However, nitrogen, argon, and carbon dioxide are not chemically reactive with magnesium, and therefore are not removed from the air by the burning of magnesium ribbon. In summary, the correct option is (i) only - burning magnesium ribbon in air removes oxygen only.
Question 25 Report
How many electrons will be found in the nucleus of an atom with mass number 23 and 17 neutrons?
Answer Details
Electrons are not found in the nucleus of an atom. The nucleus of an atom only contains protons and neutrons, while electrons are located outside the nucleus in the electron cloud. The mass number of an atom is equal to the sum of the number of protons and the number of neutrons in the nucleus. Therefore, if an atom has a mass number of 23 and 17 neutrons, then the number of protons in the nucleus can be calculated as: Protons = Mass number - Neutrons Protons = 23 - 17 Protons = 6 This means that the nucleus of the atom contains 6 protons. The number of electrons in a neutral atom is equal to the number of protons, so the atom also contains 6 electrons in the electron cloud surrounding the nucleus. In summary, the answer is that there are 6 protons and 6 electrons in the atom.
Question 26 Report
Sulphur exists in six forms in the solid state. This property is known as
Answer Details
The property of sulfur existing in six different forms in the solid-state is known as allotropy. Allotropy is a phenomenon where an element can exist in multiple forms, called allotropes, that have different physical and chemical properties but are composed of the same atoms. These different forms arise due to differences in the arrangement of atoms or molecules within the substance. In the case of sulfur, it can exist in multiple solid-state allotropes, including rhombic, monoclinic, and plastic sulfur, among others. Each of these allotropes has a different crystal structure, melting point, and other physical and chemical properties, even though they are all composed of sulfur atoms. Allotropy is a common phenomenon observed in many elements, including carbon, oxygen, and phosphorus, among others.
Question 27 Report
Which of the following factors will speed up the rate of evolution of carbon (iv) oxide in the reaction below?
2HCl + CaCO3 → CaCl2 + H2 O + CO2
Answer Details
The following factors increase a reaction rate
- Increase in concentration of reactants
- Increase in temperature
- Addition of catalyst
- Increase in the surface area of reactant(s)
Question 28 Report
Which process(es) is/are involved in the turning of starch iodide paper blue-black by chlorine gas?
Answer Details
The process involved in the turning of starch iodide paper blue-black by chlorine gas is option number 3: chlorine oxidizes the iodide ion to produce iodine which attacks the starch to give the blue-black color. When chlorine gas comes in contact with iodide ions on the starch iodide paper, it oxidizes the iodide ion to form iodine. The iodine that is produced in this reaction is then able to react with the starch present on the paper to form a blue-black complex. This blue-black complex is formed due to the arrangement of the starch molecules and the iodine atoms in a way that causes them to absorb light at a specific wavelength, giving the blue-black color. Therefore, the blue-black color that is observed on the starch iodide paper is due to the reaction between iodine and starch, which is made possible by the oxidation of iodide ions by chlorine gas.
Question 29 Report
The following are isoelectronic ions except
Answer Details
Two or more ions are said to be isoelectronic if they have the same electronic structure and the same number of valence electrons.
Na+
= 10 electrons = 2, 8
Mg2+
= 10 electrons = 2,8
O2−
= 10 electrons = 2,8
Si2+
= 12 electrons = 2,8,2
⟹
Si2+
is not isoelectronic with the rest.
Question 31 Report
The electronic configuration of element Z is 1s2 2s2 2p6 3s2 3p1 . What is the formula of the compound formed between Z and tetraoxosulphate (VI) ion.
Answer Details
Z = 1s2
2s2
2p6
3s2
3p1
?
We have Z3+
and SO2?4
The reaction : Z3+
+ SO2?4
?
Z2
(SO4
)3
.
Question 32 Report
Which of the following metals is the most essential in the regulation of blood volume, blood pressure and osmotic equilibrium?
Answer Details
The metal that is most essential in the regulation of blood volume, blood pressure, and osmotic equilibrium is sodium. Sodium is a key electrolyte that helps maintain the balance of fluids in the body, including blood volume and blood pressure. Sodium ions are positively charged and are attracted to negatively charged ions, such as chloride (Cl-) and bicarbonate (HCO3-), which together help regulate the pH of the blood. Sodium is also essential for maintaining osmotic equilibrium, which refers to the balance of solutes between cells and the extracellular fluid. Osmotic equilibrium is critical for proper cellular function and is regulated by the movement of water and electrolytes, including sodium, in and out of cells. While the other metals listed (zinc, manganese, and iron) are important for various functions in the body, such as enzyme activity and oxygen transport, they are not directly involved in regulating blood volume, blood pressure, and osmotic equilibrium in the same way that sodium is. Therefore, the answer is not options 1, 2, or 4, and the correct answer is: sodium.
Question 33 Report
The velocity, V of a gas is related to its mass, M by (k = proportionality constant)
Answer Details
Recall:
V = √3RTM
∴V∝1√M
V=k√M
V = kM12
Question 34 Report
Which of the following could not be alkane?
Answer Details
An alkane is a type of hydrocarbon with only single bonds between the carbon atoms. It follows the general formula CnH2n+2, where "n" is the number of carbon atoms in the molecule. To determine whether a molecule is an alkane or not, we can calculate its molecular formula and check if it fits the general formula of alkane. Out of the given options, the third one (C7H14) cannot be an alkane. To see why, let's use the general formula of alkane, which is CnH2n+2. For C7H14 to be an alkane, it should have 2n+2 = 2(7) + 2 = 16 hydrogen atoms. However, C7H14 has only 14 hydrogen atoms, which means it does not follow the general formula of alkane. Therefore, C7H14 cannot be an alkane. The other options are as follows: - C4H10: This is butane, which is an alkane with four carbon atoms. - C5H12: This is pentane, which is an alkane with five carbon atoms. - C8H18: This is octane, which is an alkane with eight carbon atoms. In summary, the molecule C7H14 cannot be an alkane because it does not follow the general formula of alkane, while the other options are all examples of alkanes.
Question 35 Report
Consider the reaction
A(s) + 2B(g) → 2C(aq) + D(g)
What will be the effect of a decrease in pressure on the reaction?
Answer Details
Given: The equation below
A(s) + 2B(g) → 2C(aq) + D(g)
Since we have a higher number of moles of gaseous species on the LHS, i.e 2, a decrease in pressure will favor the forward reaction.
Question 36 Report
In the reaction between sodium hydroxide and tetraoxosulphate (VI) solutions, what volume of 0.5 molar sodium hydroxide would exactly neutralize 10cm3 of 1.25 molar tetraoxosulphate (vi) acid?
Answer Details
Equation of reaction : 2NaOH + H2 SO4 → Na2 SO4 + 2H2 O
Concentration of a base, CB = 0.5M
Volume of acid, VA = 10cm3
Concentration of an acid, CA = 1.25M
Volume of base, VB = ?
Recall:
CAVACBVB=nAnB
... (1)
N.B: From the equation,
nAnB=12
From (1)
1.25×100.5×VB=12
12.50.5VB=12
25 = 0.5VB
VB = 50.0 cm3
Question 37 Report
Consider the equation below:
Cr2 O2−7 + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ + 7H2 O.
The oxidation number of chromium changes from
Answer Details
Cr2
O2−7
+ 6Fe2+
+ 14H+
→
2Cr3+
+ 6Fe3+
+ 7H2
O
The oxidation of Cr in Cr2
O2−7
:
Let the oxidation of Cr = x;
2x + (-2 x 7) = -2 ⟹
2x - 14 = -2
2x = 12 ; x = +6
Hence, the change in oxidation of Cr = +6 to +3
Question 38 Report
2-methylprop-1-ene is an isomer of
Answer Details
2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene. An isomer is a molecule that has the same molecular formula as another molecule, but a different arrangement of atoms. In this case, 2-methylprop-1-ene has the molecular formula C4H8, and so do 3-methyl but-1-ene and 2-methyl but-1-ene. The difference between these three molecules is in the arrangement of the carbon and hydrogen atoms. 2-methylprop-1-ene has a branched structure with a double bond between the first and second carbon atoms. 3-methyl but-1-ene is also a branched molecule, but the double bond is between the second and third carbon atoms. Similarly, 2-methyl but-1-ene has a double bond between the first and second carbon atoms, but it has a different branching pattern. On the other hand, pent-2-ene has five carbon atoms, so it has a different molecular formula than 2-methylprop-1-ene. Therefore, 2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene, but not of pent-2-ene, because it has the same molecular formula and a different arrangement of atoms compared to the other two isomers.
Question 39 Report
An element Z contains 80% of 168 Z and 20% of 188 Z. Its relative atomic mass is
Answer Details
R.A.M of Z = 16(80100)+18(20100)
= 12.8+3.6
= 16.4
Question 40 Report
If the cost of electricity required to discharge 10g of an ion X3+ is N20.00, how much would it cost to discharge 6g of ion Y2+ ?
[1 faraday = 96,500C, atomic masses are X = 27, Y = 24]
Answer Details
X3+
+ 3e−
→
X
3F = 27g
xF = 10g
x3=1027⟹x=109F
109
F ≡
N20.00
1F is equivalent to x
1109=x20
910=x20⟹x=N18.00
1F is equivalent to N18.00.
Y2+
+ 2e−
→
Y
2F = 24g
xF = 6g
x = 6×224=12F
1F = N18.00
12
F = 12×N18.00
= N9.00
Would you like to proceed with this action?