Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
The salt that reacts with dilute hydrochloric acid to produce a pungent smelling gas which decolourizes acidified purple potassium tetraoxomanganate (VII) solution is
Answer Details
Question 2 Report
A correct electrochemical series can be obtained from Na, Ca, Al, Mg, Zn, Fe, Pb, H, Cu, Hg, Ag, Au by interchanging
Answer Details
Question 3 Report
If 1 litre of 2.2M sulphuric acid is poured into a bucket containing 10 litres of water and the resulting solution mixed thoroughly, the resulting sulphuric acid concentration will be
Answer Details
When 1 liter of 2.2M sulphuric acid is added to 10 liters of water, the total volume of the resulting solution is 11 liters. To find the resulting concentration of sulphuric acid, we need to use the equation: M1V1 = M2V2 where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume. We can plug in the values we know: M1 = 2.2M (the initial concentration of the sulphuric acid) V1 = 1L (the initial volume of the sulphuric acid) M2 = ? (the final concentration we're trying to find) V2 = 11L (the final volume of the resulting solution) Solving for M2, we get: M2 = (M1 x V1) / V2 M2 = (2.2M x 1L) / 11L M2 = 0.2M Therefore, the resulting sulphuric acid concentration is 0.2M or 0.2 moles per liter. In summary, when 1 liter of 2.2M sulphuric acid is mixed with 10 liters of water, the resulting sulphuric acid concentration is diluted to 0.2M. This is because the total volume of the resulting solution is greater than the initial volume of the sulphuric acid, which leads to a decrease in concentration.
Question 4 Report
The number of electrons in the valence shell of an element of atomic number 14 is?
Answer Details
The number of electrons in the valence shell of an element can be determined by using the periodic table and the electron configuration of the element. The valence shell is the outermost shell that contains electrons that are involved in chemical reactions. For an element with atomic number 14, which is silicon, the electron configuration is 1s2 2s2 2p6 3s2 3p2. The valence shell of silicon is the third shell, which contains 3s2 and 3p2 electrons. Therefore, the number of electrons in the valence shell of silicon is 4 electrons.
Question 5 Report
An aqueous solution of a metal salt, M. gives a white precipitate with NaOH which dissolves in excess NaOH. With aqueous ammonia, the solution of M also gives a white precipitate which dissolves in excess ammonia Therefore the cation in M is
Answer Details
Question 6 Report
The periodic classification is an arrangement of the elements
Answer Details
The periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that lists all the known chemical elements in order of increasing atomic number, arranged in rows and columns according to their electronic structure and chemical properties. The atomic number of an element is the number of protons in the nucleus of an atom of that element. Each element has a unique atomic number, which determines its position in the periodic table. The elements are arranged in rows called periods, and in columns called groups or families. Elements in the same group have similar properties because they have the same number of valence electrons, which are the electrons in the outermost shell of the atom. The periodic table is an incredibly useful tool for chemists because it allows them to predict the properties of elements based on their position in the table. For example, elements in the same group tend to form similar compounds, so if you know the properties of one element in a group, you can often predict the properties of the other elements in that group. In summary, the periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that organizes the elements into rows and columns based on their electronic structure and chemical properties, allowing scientists to make predictions about the behavior of the elements based on their position in the table.
Question 7 Report
The type of bonding in [Cu(NH3 )4 ]2+ is
Answer Details
The type of bonding in [Cu(NH3)4]2+ is coordinate bonding. Coordinate bonding (also known as dative covalent bonding) is a type of covalent bonding where one atom (in this case, the nitrogen atom in NH3) donates a pair of electrons to another atom or ion (in this case, the copper ion Cu2+). The donating atom is called the ligand, and the receiving atom or ion is called the central metal ion. In [Cu(NH3)4]2+, each ammonia molecule (NH3) donates a lone pair of electrons on the nitrogen atom to the copper ion, forming four coordinate bonds between the ligands and the central copper ion. The presence of coordinate bonds is indicated by the use of square brackets around the coordination compound, and the charge on the compound is indicated by the superscript outside the brackets. Therefore, the answer is option A: coordinate.
Question 8 Report
An element X forms the following compounds with chlorine; XCl4 , XCl3 , XCl2 . This illustrates the
Answer Details
The element X forming different compounds with chlorine (XCl4, XCl3, and XCl2) illustrates the law of multiple proportions. This law states that when two elements combine to form more than one compound, the ratio of the masses of one element that combine with a fixed mass of the other element is always a whole number ratio. In this case, the ratio of chlorine to X in the different compounds (XCl4, XCl3, and XCl2) is 4:1, 3:1, and 2:1, respectively, which are all whole number ratios.
Question 9 Report
Which of the following pairs of substances will react further with oxygen to form a higher oxide?
Answer Details
Question 10 Report
The solubility of the solids that dissolves in a given solvent with the liberation of heat will
Answer Details
The solubility of solids in a given solvent is the amount of solid that can dissolve in the solvent to form a solution. When a solid dissolves in a solvent, it releases heat. The solubility of the solid in the solvent can be affected by changes in temperature. Generally, when the temperature of a solution increases, the solubility of the solid in the solvent increases as well. This is because the increased heat energy makes it easier for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will increase with an increase in temperature. On the other hand, if the temperature decreases, the solubility of the solid in the solvent decreases. This is because the decreased heat energy makes it harder for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will decrease with a decrease in temperature. In summary, the solubility of solids in a given solvent will generally increase with an increase in temperature and decrease with a decrease in temperature.
Question 12 Report
A given amount of gas occupies 10.0dm5 at 4atm and 273°C. The number of moles of the gas present is [Molar volume of gas at s.t.p = 22.4dm3
]
Answer Details
The ideal gas law is PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature. We can use this equation to solve for the number of moles of gas present. First, we need to convert the volume from dm5 to dm3, which is the same as liters (L). So, 10.0 dm5 is equal to 10.0/1000 = 0.01 dm3 or 0.01 L. Next, we need to convert the temperature from Celsius to Kelvin by adding 273 to get 546 K. Now we can plug in the values we have into the ideal gas law: 4 atm x 0.01 L = n x 0.0821 L·atm/K·mol x 546 K Simplifying, we get: 0.04 = n x 44.8 Solving for n, we get: n = 0.04/44.8 = 0.00089 mol Finally, we can compare this value to the molar volume of a gas at standard temperature and pressure (STP), which is 22.4 L/mol. To do this, we need to convert the volume of gas we have to STP conditions. Since the temperature is already at STP (273 K), we just need to adjust the pressure. Using the ideal gas law, we can solve for the volume at STP: 1 atm x V = 0.00089 mol x 0.0821 L·atm/K·mol x 273 K Simplifying, we get: V = 0.0224 L or 22.4 dm3 Therefore, the amount of gas present is equal to 0.00089 mol, which is less than 1 mol. So the answer is 0.89 mol.
Question 13 Report
The Consecutive members of an alkane homologous series differ by
Answer Details
The consecutive members of an alkane homologous series differ by a CH2 unit. This means that each successive member of the alkane series has one more CH2 unit than the previous member. For example, consider the simplest alkane, methane (CH4). The next member of the series is ethane (C2H6), which differs from methane by one CH2 unit. The next member after that is propane (C3H8), which differs from ethane by another CH2 unit. This pattern continues for all members of the alkane homologous series. The reason for this is that each carbon atom in the alkane chain must be bonded to four other atoms, which are usually hydrogen atoms. This means that each carbon atom in the chain can only bond to one other carbon atom. Therefore, the length of the alkane chain can only increase by adding CH2 units to the end of the chain. In summary, the consecutive members of an alkane homologous series differ by a CH2 unit because this is the only way to add length to the alkane chain while maintaining the required number of bonds for each carbon atom in the chain.
Question 14 Report
The alkanoic acid found in human sweat is
Answer Details
The alkanoic acid found in human sweat is CH3CH2COOH, also known as propionic acid. Sweat is composed of various substances such as water, electrolytes, and waste products. One of these waste products is an oily substance called sebum, which is secreted by the sebaceous glands in the skin. When sebum breaks down, it forms various fatty acids, including propionic acid. Propionic acid has a slightly pungent odor, which is why sweat can sometimes smell sour or cheesy. However, the presence of propionic acid in sweat is actually beneficial, as it has antimicrobial properties that help to prevent the growth of harmful bacteria on the skin. In summary, the alkanoic acid found in human sweat is propionic acid, which is a fatty acid produced when sebum breaks down. Its antimicrobial properties help to keep the skin healthy.
Question 15 Report
Which of these sources of water may likely contain the least concentration of Ca2+ and Mg2+ ?
Answer Details
The source of water that is likely to contain the least concentration of Ca2+ and Mg2+ is tap water. Tap water is treated and processed before it is made available for consumption, which often involves removing minerals such as calcium and magnesium. Spring water and river water, on the other hand, are naturally occurring and generally contain higher levels of minerals. Sea water has the highest concentration of minerals, including Ca2+ and Mg2+.
Question 17 Report
2SO2 (g) + O2 (g) ↔ 2SO3 (g) ΔH = -395.7kJmol−1
In the equation, an increase in temperature will shift the equilibrium position to the
Answer Details
Question 18 Report
The knowledge of half-life can be used to
Question 19 Report
According to the Kinetic Theory an increase in temperature causes the kinetic energy of particles to
Answer Details
The kinetic energy of particles increases with an increase in temperature. In the Kinetic Theory, temperature is related to the average kinetic energy of the particles in a substance. The higher the temperature, the faster the particles move, and the more energy they have. Think of it like this: if you throw a ball, it will have more energy and travel farther if you throw it harder. Similarly, if you heat up a substance, its particles will move faster and have more energy. So, the answer is that an increase in temperature causes the kinetic energy of particles to increase.
Question 20 Report
Which of the following is used to power steam engines?
Answer Details
Coal is the fuel that is typically used to power steam engines. Coal is burned in a furnace to heat water and produce steam, which is then used to power a steam engine. The steam engine converts the energy from the steam into mechanical energy, which can be used to power machines or generate electricity. Coal is a fossil fuel that has been used for centuries as a source of energy, and it played a significant role in the industrial revolution, powering steam engines that were used to drive machines in factories and transport goods and people by train. Today, steam engines are less common as other forms of energy have taken their place, but they remain an important part of our history and technological development.
Question 21 Report
A substance that is used as a ripening agent for fruits is
Answer Details
The substance that is commonly used as a ripening agent for fruits is ethene. Ethene, also known as ethylene, is a natural plant hormone that is produced by fruits, especially during the ripening process. It is a colorless gas that can be easily synthesized and used as a ripening agent for fruits. When fruits are exposed to ethene, it triggers a series of biochemical reactions that accelerate the natural ripening process. This can help fruits to ripen faster and more uniformly, which is important for commercial purposes where fruits need to be sold quickly. The use of ethene as a ripening agent is regulated by food safety agencies, as excessive exposure to ethene can cause over-ripening and spoilage of fruits. However, when used in appropriate concentrations, ethene is a safe and effective way to promote the ripening of fruits.
Question 22 Report
The presence of ammonia gas in a desiccator can exclusively be removed by
Answer Details
Question 23 Report
The situation obtained when a perfect gas expands into a vacuum is
Question 24 Report
How many atoms are present in 6.0g of magnesium? [Mg = 24, N.A = 6.02 x 10 23 mol]
Answer Details
Question 26 Report
The reaction between an organic acid and an alcohol in the presence of an acid catalyst is known as;
Answer Details
The reaction between an organic acid and an alcohol in the presence of an acid catalyst is known as esterification. Esterification is the process of forming an ester, which is a type of organic compound, from an alcohol and an acid. The acid catalyst is used to speed up the reaction by providing a proton to the reaction mixture, which helps to form the ester. Esterification results in the loss of a water molecule from the reaction mixture, which makes the reaction a type of dehydration reaction. However, it is important to note that esterification is a specific type of dehydration reaction where the products are an ester and an alcohol. So, the answer is esterification.
Question 27 Report
If one of the following oxides is heated with hydrogen or carbon using a bunsen burner. it is not reduced to the metal, Which one is it?
Answer Details
The oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner is magnesium oxide. Magnesium oxide is an ionic compound made up of positively charged magnesium ions and negatively charged oxygen ions. When heated with hydrogen or carbon, the oxygen ions are not easily removed from the compound. This is because the ionic bond between the magnesium and oxygen ions is very strong and requires a lot of energy to break. On the other hand, lead oxide, copper oxide, and tin oxide are all metal oxides and can be reduced to the metal by heating with hydrogen or carbon. This is because they have a weaker bond between the metal and oxygen ions, allowing the oxygen to be removed more easily when heated. In conclusion, magnesium oxide is the oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner.
Question 28 Report
Which of the following are mixtures?
I. Petroleum
II. Rubber latex
III. Vulcanizer's solution
IV. Carbon sulphide
Answer Details
Question 29 Report
Elements P, Q, R, S have 6, 11, 15, 17 electrons respectively, therefore,
Answer Details
Elements form bonds with other elements in order to attain a stable electron configuration, like the one found in noble gases. There are two types of bonds: covalent and ionic (also called electrovalent). In covalent bonds, two elements share electrons to attain a stable electron configuration. This type of bond is formed between two non-metal elements. In ionic bonds, one element donates electrons to another element, creating ions. This type of bond is formed between a metal and a non-metal element. Based on the information given, we can deduce the following: - P is a metal, as it has only 6 electrons. - Q is a non-Metal, as it has 11 electrons. - R is a metal, as it has 15 electrons. - S is a non-Metal, as it has 17 electrons. So, from this information, we can conclude that: - P will form an ionic bond with R, as P is a metal and R is a metal. - Q will form a covalent bond with S, as Q is a non-Metal and S is a non-Metal. Therefore, the correct answer is "Q will form a covalent bond with S."
Question 30 Report
What is the PH of 0.00 1 moldm3 solution of the sodium hydroxide
Question 31 Report
Which of the compounds is composed of Al, Si, O and H?
Answer Details
The compound composed of Al, Si, O and H is clay. Clay is a type of sedimentary rock that is made up of very small mineral particles, including hydrated aluminum silicates and other minerals such as quartz and feldspar. These minerals are rich in aluminum, silicon, oxygen, and hydrogen, which gives clay its unique chemical composition. Clay is formed through a process of weathering and erosion of rocks containing these minerals over a long period of time. As water and other natural forces break down the rocks, the mineral particles become suspended in water and are eventually deposited in sedimentary layers. Over time, these layers become compacted and cemented together, forming the solid clay deposits we see today. Therefore, the answer is option C: Clay.
Question 32 Report
A balanced chemical equation obeys the law of
Answer Details
A balanced chemical equation obeys the law of conservation of mass. This means that in a chemical reaction, the total mass of the reactants must be equal to the total mass of the products. In other words, atoms cannot be created or destroyed during a chemical reaction, only rearranged. For example, if we burn a piece of wood, the mass of the ashes and the gases released will be equal to the mass of the original wood. This is because the atoms in the wood (carbon, hydrogen, oxygen, etc.) are rearranged during the burning process to form new molecules, but the total number of atoms remains the same. By balancing a chemical equation, we ensure that the same number and type of atoms are present on both sides of the equation, which satisfies the law of conservation of mass.
Question 33 Report
Diamond is a bad conductor of electricity because its bonding electrons are used in
Answer Details
Diamond is a bad conductor of electricity because of its unique structure and bonding. The carbon atoms in diamond form a covalent network, where each carbon atom is bonded to four other carbon atoms. These bonds are strong and hold the atoms in a rigid three-dimensional structure called a crystal lattice. In a covalent bond, atoms share electrons to form a stable compound. In diamond, each carbon atom shares its valence electrons with four neighboring carbon atoms, forming a very strong covalent bond. All the valence electrons in the crystal lattice are used in covalent bond formation, which means there are no free or mobile electrons to carry an electric current. In other words, the electrons are tightly held in the covalent bonds, making it difficult for them to move around the crystal lattice and conduct electricity. In contrast, metals conduct electricity well because they have delocalized or free electrons that can move through the lattice of positively charged ions. So, diamond, being a covalent network solid, does not have free electrons that can carry an electric current, which is why it is a bad conductor of electricity.
Question 34 Report
Which of the following separation techniques can be employed in obtaining solvent from its solution?
Answer Details
The separation technique that can be employed in obtaining a solvent from its solution is evaporation. Evaporation is a process that involves heating a solution to vaporize the solvent, leaving behind the solute. The vaporized solvent can then be condensed and collected as a pure liquid. This technique is commonly used in industry and laboratory settings to recover solvents from solutions, as it is a simple and effective way to purify liquids. Distillation can also be used to separate a solvent from a solution, but it is a more complex process that involves boiling the solution and then condensing the vapors in a separate apparatus. Filtration and precipitation are not suitable for separating a solvent from a solution, as they are primarily used to separate solid particles from a liquid mixture.
Question 35 Report
The end products of burning a candle in the atmosphere are water and
Question 36 Report
At what temperature is the solubility of potassium trioxonitrate(V ) equal to that of sodium trioxonitrate (V)?
Answer Details
Question 37 Report
When air which contains the gases Oxygen, nitrogen, carbondioxide, water vapour and the rare gases, is passed through alkaline pyrogallol and then over quicklime, the only gases left are;
Answer Details
Question 39 Report
A sample of hard water contains some calcium sulphate and calcium hydrogen carbonate. The total hardness may therefore be removed by
Question 40 Report
The refreshing and characteristic taste of soda water and other soft drinks is as a result of the presence of
Would you like to proceed with this action?