Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
Calculate the pH of 0.05 moldm?3 H2 SO4
Answer Details
To solve this problem, we need to use the formula for calculating the pH of a solution, which is: pH = -log[H+] where [H+] is the concentration of hydrogen ions in moles per liter. The given chemical equation is: H2SO4 + 2H2O → 2H3O+ + SO42- From this equation, we can see that one molecule of sulfuric acid (H2SO4) can donate two hydrogen ions (H+) to the solution, which means that the concentration of hydrogen ions is twice the concentration of sulfuric acid. Therefore, the concentration of hydrogen ions in this solution is: [H+] = 2 x 0.05 moldm^-3 = 0.1 moldm^-3 Now we can use the formula for pH: pH = -log[H+] pH = -log(0.1) pH = 1.00 Therefore, the pH of the solution is 1.00.
Question 2 Report
Which of the following statements is correct about the periodic table?
Answer Details
Question 3 Report
What mass of Cu would be produced by the cathodic reduction of Cu2+ when 1.60A of current passes through a solution of CuSO4 for 1 hour. (F=96500Cmol−1 , Cu=64)
Answer Details
The reduction reaction that occurs at the cathode during the electrolysis of CuSO4" tabindex="0" class="mjx-chtml MathJax_CHTML" id="MathJax-Element-1-Frame">4, is: Cu2+" tabindex="0" class="mjx-chtml MathJax_CHTML" id="MathJax-Element-2-Frame">2+ + 2e- -> Cu(s) From this, we can see that each Cu2+ ion requires two electrons to be reduced to copper metal. Given the current (I = 1.60 A), time (t = 1 hour = 3600 s), and Faraday's constant (F = 96500 C/mol), we can calculate the total amount of charge that passes through the solution: Q = I*t = 1.60 A * 3600 s = 5760 C Using Faraday's law, we can relate the amount of charge that passes through the solution to the number of moles of electrons transferred during the reduction reaction: n = Q/F = 5760 C / 96500 C/mol = 0.0597 mol e- Since each Cu2+ ion requires 2 electrons to be reduced to copper metal, the number of moles of copper produced is half the number of moles of electrons transferred: mol Cu = 0.0597 mol e- / 2 = 0.0299 mol Cu Finally, we can convert the moles of copper produced to grams using the molar mass of copper: mass Cu = 0.0299 mol Cu * 64 g/mol = 1.91 g Therefore, the answer is 1.91 g of Cu produced. is correct.
Question 5 Report
Elements P, Q, R, S have 6, 11, 15, 17 electrons respectively, therefore,
Answer Details
Elements form bonds with other elements in order to attain a stable electron configuration, like the one found in noble gases. There are two types of bonds: covalent and ionic (also called electrovalent). In covalent bonds, two elements share electrons to attain a stable electron configuration. This type of bond is formed between two non-metal elements. In ionic bonds, one element donates electrons to another element, creating ions. This type of bond is formed between a metal and a non-metal element. Based on the information given, we can deduce the following: - P is a metal, as it has only 6 electrons. - Q is a non-Metal, as it has 11 electrons. - R is a metal, as it has 15 electrons. - S is a non-Metal, as it has 17 electrons. So, from this information, we can conclude that: - P will form an ionic bond with R, as P is a metal and R is a metal. - Q will form a covalent bond with S, as Q is a non-Metal and S is a non-Metal. Therefore, the correct answer is "Q will form a covalent bond with S."
Question 6 Report
A sample of hard water contains some calcium sulphate and calcium hydrogen carbonate. The total hardness may therefore be removed by
Question 7 Report
Sieving is a technique used to separate mixtures containing solid particles of
Answer Details
Sieving is a technique used to separate mixtures containing solid particles of different sizes. A sieve is a mesh or perforated screen that is used to separate particles based on their size. The mixture is poured onto the sieve, and the particles that are too large to pass through the holes are left on top, while the smaller particles fall through the holes and are collected below. This process allows for the separation of the different-sized particles, making it easier to purify or further process the mixture.
Question 8 Report
Methanoic acid mixes with water in all proportions and has about the same boiling point as water. Which of the following methods would you adopt to obtain pure water from a mixture of Sand, water and methanoic acid?
Question 9 Report
ME + nF -----> pG + qH
In the equation shown, the equilibrium constant is given by?
Answer Details
The equilibrium constant for a chemical reaction is a measure of the balance between the reactants and products of a reaction at a particular temperature. The equilibrium constant is given by the ratio of the product of the concentration of the products raised to their stoichiometric coefficients, to the product of the concentration of the reactants raised to their stoichiometric coefficients. In the equation ME + nF -> pG + qH, the correct expression for the equilibrium constant is [G]^p * [H]^q / [E]^m * [F]^n, represented by.
Question 10 Report
The ionic radii of metals are usually
Answer Details
The ionic radii of metals are usually smaller than their atomic radii. The size of an atom is determined by the distance between the nucleus and the outermost electrons, which is known as the atomic radius. When a metal atom loses one or more electrons to form a positive ion (or cation), the resulting ion has a smaller size than the original atom. This is because the positive charge of the ion attracts the remaining electrons closer to the nucleus, making the ion smaller in size. So, when a metal forms a cation, its ionic radius is typically smaller than its atomic radius. This is a general trend in the periodic table, although there are some exceptions.
Question 11 Report
A basic postulate of the kinetic theory of gases is that the molecules of a gas move in straight lines between collisions. This implies that
Question 12 Report
Which of the following pairs of substances will react further with oxygen to form a higher oxide?
Answer Details
Question 14 Report
The conductivity of an acid solution depends on the
Answer Details
The conductivity of an acid solution depends on the amount of ions present and their mobilities. When an acid dissolves in water, it forms ions that can carry an electric charge. These ions are what allows the solution to conduct electricity. The more ions there are in the solution, the better it can conduct electricity. However, not all ions have the same mobility or ability to move around in the solution. Ions with a higher mobility can move more easily through the solution, leading to a higher conductivity. Therefore, the conductivity of an acid solution is determined by both the amount of ions present and their mobilities. Other factors such as temperature can also affect conductivity, but the primary factors are the amount and mobility of ions.
Question 15 Report
A substance that is used as a ripening agent for fruits is
Answer Details
The substance that is commonly used as a ripening agent for fruits is ethene. Ethene, also known as ethylene, is a natural plant hormone that is produced by fruits, especially during the ripening process. It is a colorless gas that can be easily synthesized and used as a ripening agent for fruits. When fruits are exposed to ethene, it triggers a series of biochemical reactions that accelerate the natural ripening process. This can help fruits to ripen faster and more uniformly, which is important for commercial purposes where fruits need to be sold quickly. The use of ethene as a ripening agent is regulated by food safety agencies, as excessive exposure to ethene can cause over-ripening and spoilage of fruits. However, when used in appropriate concentrations, ethene is a safe and effective way to promote the ripening of fruits.
Question 16 Report
Which of the following produces relatively few ions in solution?
Answer Details
The correct answer is AI(OH)3. When ionic compounds dissolve in water, they dissociate into their constituent ions, producing charged particles in solution. The more ions a compound produces, the more conductive it is in solution. AI(OH)3, also known as aluminum hydroxide, produces relatively few ions in solution because it is a weak base. When AI(OH)3 dissolves in water, it releases a small amount of Al3+ and OH- ions. In contrast, NaOH, KOH, and Ca(OH)2 are strong bases that dissociate more completely in water and produce more ions in solution. NaOH and KOH produce one hydroxide ion for every sodium or potassium ion, while Ca(OH)2 produces two hydroxide ions for every calcium ion. Therefore, of the options listed, AI(OH)3 produces relatively few ions in solution.
Question 17 Report
In the upper atmosphere, the ultra-violet light breaks off a free chlorine atom from chlorofluorocarbon molecule. The effect of this is that the free chlorine atom will
Answer Details
The free chlorine atom that breaks off from a chlorofluorocarbon molecule will be very reactive and will attack ozone in the upper atmosphere. Ozone is a molecule made up of three oxygen atoms, and when the free chlorine atom reacts with ozone, it breaks the ozone molecule into two separate oxygen molecules. This reaction reduces the amount of ozone in the atmosphere, which is known as ozone depletion. Over time, this can lead to a thinning of the ozone layer, which protects life on Earth from harmful ultraviolet radiation from the sun.
Question 18 Report
What is the concentration of a solution containing 2g of NaOH in 100cm3 of solution? [Na = 23, O =16, H = 1]
Answer Details
The concentration of a solution containing 2g of NaOH in 100cm3 of solution is 0.40 moldm-3. This can be calculated by using the formula: molarity (M) = number of moles of solute / volume of solution (in liters) First, we need to calculate the number of moles of NaOH in the solution. The molar mass of NaOH is (23 + 16 + 1) = 40 g/mol. So, 2g of NaOH is equal to 2/40 = 0.05 moles. Next, we need to convert the volume of the solution from cm3 to liters. 1 cm3 = 0.001 liters, so 100 cm3 = 0.1 liters. Finally, we can calculate the molarity as follows: M = 0.05 moles / 0.1 liters = 0.5 mol/L = 0.50 moldm-3 So, the concentration of the solution is 0.50 moldm-3.
Question 19 Report
Which of the following is used to power steam engines?
Answer Details
Coal is the fuel that is typically used to power steam engines. Coal is burned in a furnace to heat water and produce steam, which is then used to power a steam engine. The steam engine converts the energy from the steam into mechanical energy, which can be used to power machines or generate electricity. Coal is a fossil fuel that has been used for centuries as a source of energy, and it played a significant role in the industrial revolution, powering steam engines that were used to drive machines in factories and transport goods and people by train. Today, steam engines are less common as other forms of energy have taken their place, but they remain an important part of our history and technological development.
Question 20 Report
The refreshing and characteristic taste of soda water and other soft drinks is as a result of the presence of
Question 21 Report
The periodic classification is an arrangement of the elements
Answer Details
The periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that lists all the known chemical elements in order of increasing atomic number, arranged in rows and columns according to their electronic structure and chemical properties. The atomic number of an element is the number of protons in the nucleus of an atom of that element. Each element has a unique atomic number, which determines its position in the periodic table. The elements are arranged in rows called periods, and in columns called groups or families. Elements in the same group have similar properties because they have the same number of valence electrons, which are the electrons in the outermost shell of the atom. The periodic table is an incredibly useful tool for chemists because it allows them to predict the properties of elements based on their position in the table. For example, elements in the same group tend to form similar compounds, so if you know the properties of one element in a group, you can often predict the properties of the other elements in that group. In summary, the periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that organizes the elements into rows and columns based on their electronic structure and chemical properties, allowing scientists to make predictions about the behavior of the elements based on their position in the table.
Question 22 Report
(I). 3CuO(s) + 2NH3(g) -----> 3Cu(s) + 3H2O(l) + N2(g)
(II). 2NH3(g) + 3Cl2(g) -----> 6HCl(g) + N2(g)
(III). 4NH3(g) + 3O2(g) -----> 6H2O(l) + N2(g)
The reactions represented by the equations above demonstrate the
Answer Details
Question 23 Report
Which of the following separation techniques can be employed in obtaining solvent from its solution?
Answer Details
The separation technique that can be employed in obtaining a solvent from its solution is evaporation. Evaporation is a process that involves heating a solution to vaporize the solvent, leaving behind the solute. The vaporized solvent can then be condensed and collected as a pure liquid. This technique is commonly used in industry and laboratory settings to recover solvents from solutions, as it is a simple and effective way to purify liquids. Distillation can also be used to separate a solvent from a solution, but it is a more complex process that involves boiling the solution and then condensing the vapors in a separate apparatus. Filtration and precipitation are not suitable for separating a solvent from a solution, as they are primarily used to separate solid particles from a liquid mixture.
Question 24 Report
According to the Kinetic Theory an increase in temperature causes the kinetic energy of particles to
Answer Details
The kinetic energy of particles increases with an increase in temperature. In the Kinetic Theory, temperature is related to the average kinetic energy of the particles in a substance. The higher the temperature, the faster the particles move, and the more energy they have. Think of it like this: if you throw a ball, it will have more energy and travel farther if you throw it harder. Similarly, if you heat up a substance, its particles will move faster and have more energy. So, the answer is that an increase in temperature causes the kinetic energy of particles to increase.
Question 25 Report
A correct electrochemical series can be obtained from Na, Ca, Al, Mg, Zn, Fe, Pb, H, Cu, Hg, Ag, Au by interchanging
Answer Details
Question 26 Report
The knowledge of half-life can be used to
Question 27 Report
When large hydrocarbon molecules are heated at high temperature in the presence of a catalyst to give smaller molecules, the process is known as
Answer Details
The process of breaking down large hydrocarbon molecules into smaller molecules by heating them at high temperatures in the presence of a catalyst is known as cracking. This process is used to convert heavy, high-molecular-weight hydrocarbon molecules into lighter, more valuable products such as gasoline and diesel fuel. The high temperatures cause the large molecules to break apart into smaller ones, and the catalyst helps speed up the reaction. This process is important in the petrochemical industry, as it allows for the production of a wider range of useful products from crude oil.
Question 28 Report
The salt that reacts with dilute hydrochloric acid to produce a pungent smelling gas which decolourizes acidified purple potassium tetraoxomanganate (VII) solution is
Answer Details
Question 31 Report
An element X forms the following compounds with chlorine; XCl4 , XCl3 , XCl2 . This illustrates the
Answer Details
The element X forming different compounds with chlorine (XCl4, XCl3, and XCl2) illustrates the law of multiple proportions. This law states that when two elements combine to form more than one compound, the ratio of the masses of one element that combine with a fixed mass of the other element is always a whole number ratio. In this case, the ratio of chlorine to X in the different compounds (XCl4, XCl3, and XCl2) is 4:1, 3:1, and 2:1, respectively, which are all whole number ratios.
Question 32 Report
In the reaction between sodium hydroxide and sulphuric acid solutions, what volume of 0.5 molar sodium hydroxide would exactly neutralise 10cm3 of 1.25 molar sulphuric acid?
Question 33 Report
Which of these sources of water may likely contain the least concentration of Ca2+ and Mg2+ ?
Answer Details
The source of water that is likely to contain the least concentration of Ca2+ and Mg2+ is tap water. Tap water is treated and processed before it is made available for consumption, which often involves removing minerals such as calcium and magnesium. Spring water and river water, on the other hand, are naturally occurring and generally contain higher levels of minerals. Sea water has the highest concentration of minerals, including Ca2+ and Mg2+.
Question 34 Report
The alkanoic acid found in human sweat is
Answer Details
The alkanoic acid found in human sweat is CH3CH2COOH, also known as propionic acid. Sweat is composed of various substances such as water, electrolytes, and waste products. One of these waste products is an oily substance called sebum, which is secreted by the sebaceous glands in the skin. When sebum breaks down, it forms various fatty acids, including propionic acid. Propionic acid has a slightly pungent odor, which is why sweat can sometimes smell sour or cheesy. However, the presence of propionic acid in sweat is actually beneficial, as it has antimicrobial properties that help to prevent the growth of harmful bacteria on the skin. In summary, the alkanoic acid found in human sweat is propionic acid, which is a fatty acid produced when sebum breaks down. Its antimicrobial properties help to keep the skin healthy.
Question 35 Report
If 1 litre of 2.2M sulphuric acid is poured into a bucket containing 10 litres of water and the resulting solution mixed thoroughly, the resulting sulphuric acid concentration will be
Answer Details
When 1 liter of 2.2M sulphuric acid is added to 10 liters of water, the total volume of the resulting solution is 11 liters. To find the resulting concentration of sulphuric acid, we need to use the equation: M1V1 = M2V2 where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume. We can plug in the values we know: M1 = 2.2M (the initial concentration of the sulphuric acid) V1 = 1L (the initial volume of the sulphuric acid) M2 = ? (the final concentration we're trying to find) V2 = 11L (the final volume of the resulting solution) Solving for M2, we get: M2 = (M1 x V1) / V2 M2 = (2.2M x 1L) / 11L M2 = 0.2M Therefore, the resulting sulphuric acid concentration is 0.2M or 0.2 moles per liter. In summary, when 1 liter of 2.2M sulphuric acid is mixed with 10 liters of water, the resulting sulphuric acid concentration is diluted to 0.2M. This is because the total volume of the resulting solution is greater than the initial volume of the sulphuric acid, which leads to a decrease in concentration.
Question 36 Report
The type of bonding in [Cu(NH3 )4 ]2+ is
Answer Details
The type of bonding in [Cu(NH3)4]2+ is coordinate bonding. Coordinate bonding (also known as dative covalent bonding) is a type of covalent bonding where one atom (in this case, the nitrogen atom in NH3) donates a pair of electrons to another atom or ion (in this case, the copper ion Cu2+). The donating atom is called the ligand, and the receiving atom or ion is called the central metal ion. In [Cu(NH3)4]2+, each ammonia molecule (NH3) donates a lone pair of electrons on the nitrogen atom to the copper ion, forming four coordinate bonds between the ligands and the central copper ion. The presence of coordinate bonds is indicated by the use of square brackets around the coordination compound, and the charge on the compound is indicated by the superscript outside the brackets. Therefore, the answer is option A: coordinate.
Question 37 Report
Aluminium does not react with either dilute or concentrated trioxonitrate (V) acid because
Answer Details
Question 38 Report
2KClO3(g) MNO3? 2KCl(s) + 3O2(g)
The importance of the catalyst in the reaction above is that
Question 39 Report
To what temperature must a gas at 273k be heated in order to double both its volume and pressure?
Question 40 Report
Which of the compounds is composed of Al, Si, O and H?
Answer Details
The compound composed of Al, Si, O and H is clay. Clay is a type of sedimentary rock that is made up of very small mineral particles, including hydrated aluminum silicates and other minerals such as quartz and feldspar. These minerals are rich in aluminum, silicon, oxygen, and hydrogen, which gives clay its unique chemical composition. Clay is formed through a process of weathering and erosion of rocks containing these minerals over a long period of time. As water and other natural forces break down the rocks, the mineral particles become suspended in water and are eventually deposited in sedimentary layers. Over time, these layers become compacted and cemented together, forming the solid clay deposits we see today. Therefore, the answer is option C: Clay.
Would you like to proceed with this action?