Question 1 Report
Find the value of x if [1÷64(x+2)]=[4(x?3)÷16x]
Answer Details
[1÷64(x+2)]=[4(x−3)÷16x] [ 1 ÷ 64 ( x + 2 ) ] = [ 4 ( x − 3 ) ÷ 16 x ] 64−(x+2)=[4(x−3)]÷[16x] 64 − ( x + 2 ) = [ 4 ( x − 3 ) ] ÷ [ 16 x ] Break down 4, 16 and 64 into smaller index numbers: 2−6(x+2)=22(x−3)÷24(x) 2 − 6 ( x + 2 ) = 2 2 ( x − 3 ) ÷ 2 4 ( x ) 2−6x−12=22x−4x−6 2 − 6 x − 12 = 2 2 x − 4 x − 6 2−6x−12=2−2x−6 2 − 6 x − 12 = 2 − 2 x − 6 − 6x − 12 = − 2x − 6 Collect the like terms: −6x + 2x = −6 + 12 −4x =6 x = 64 6 4 x = −32