Question 1 Report
Simplify [1÷(x2+3x+2)]+[1÷(x2+5x+6)]
Answer Details
[1÷(x2+3x+2)]+[1÷(x2+5x+6)] [ 1 ÷ ( x 2 + 3 x + 2 ) ] + [ 1 ÷ ( x 2 + 5 x + 6 ) ] = 1÷(x2+3x+2)+[1÷(x2+5x+6)] 1 ÷ ( x 2 + 3 x + 2 ) + [ 1 ÷ ( x 2 + 5 x + 6 ) ] = [1÷((x2+x)+(2x+2))]+[1÷((x2+3x)+(2x+6))] [ 1 ÷ ( ( x 2 + x ) + ( 2 x + 2 ) ) ] + [ 1 ÷ ( ( x 2 + 3 x ) + ( 2 x + 6 ) ) ] = [1 ÷ (x(x + 2) + 2(x +1))] + [1 ÷ (x(x + 3) +2(x + 3) )] = [1 ÷ (x + 1)(x + 2)] + [1 ÷ ((x + 3) + (x + 2))] =((x + 3) + (x + 1)) ÷ (x + 1)(x + 2)(x + 3) Using the L.C.M =((x + x + 3 + 1)) ÷ (x + 1)(x + 2)(x + 3) =(2x+4)/(x+1)(x+2)(x+3) =2(x+2)/(x+1)(x+2)(x+3) = 2(x+1)(x+3)