Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x.
Answer Details
To differentiate the function \(\sqrt[3]{(3x^3 + 1)}\), we use the chain rule. Let \(u = 3x^3 + 1\), then we have:
\[\frac{d}{dx} \sqrt[3]{(3x^3 + 1)} = \frac{d}{du}u^{1/3}\cdot\frac{d}{dx}(3x^3 + 1)\]
Simplifying, we get:
\[\frac{d}{dx} \sqrt[3]{(3x^3 + 1)} = \frac{1}{3}(3x^3 + 1)^{-2/3}\cdot(9x^2)\]
Simplifying further, we get:
\[\frac{d}{dx} \sqrt[3]{(3x^3 + 1)} = \frac{3x^2}{\sqrt[3]{(3x^3 + 1)^2}}\]
Therefore, the correct option is (b) \(\frac{3x^2}{\sqrt[3]{(3x^3 + 1)^2}}\).