Question 1 Report
Find the value of x at the minimum point of the curve y = x3 + x2 - x + 1
Answer Details
y = x3 + x2 - x + 1 dydx d y d x = d(x3)dx d ( x 3 ) d x + d(x2)dx d ( x 2 ) d x - d(x)dx d ( x ) d x + d(1)dx d ( 1 ) d x dydx d y d x = 3x2 + 2x - 1 = 0 dydx d y d x = 3x2 + 2x - 1 At the maximum point dydx d y d x = 0 3x2 + 2x - 1 = 0 (3x2 + 3x) - (x - 1) = 0 3x(x + 1) -1(x + 1) = 0 (3x - 1)(x + 1) = 0 therefore x = 13 1 3 or -1 For the maximum point d2ydx2 d 2 y d x 2 < 0
d2ydx2 d 2 y d x 2 6x + 2when x = 13 1 3 dx2dx2 d x 2 d x 2 = 6(13 1 3 ) + 2= 2 + 2 = 4d2ydx2 d 2 y d x 2 > o which is the minimum pointwhen x = -1d2ydx2 d 2 y d x 2 = 6(-1) + 2= -6 + 2 = -4-4 < 0
therefore, d2ydx2 d 2 y d x 2 < 0
the maximum point is -1