Question 1 Report
Given that M = \(\begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}\) and N = \(\begin{pmatrix} 5 & 6 \\ -2 & -3 \end{pmatrix}\), calculate (3M - 2N)
Answer Details
To calculate 3M - 2N, we need to multiply each matrix by its scalar factor and then subtract the results. First, we have: 3M = 3 x \(\begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}\) = \(\begin{pmatrix} 9 & 6 \\ -3 & 12 \end{pmatrix}\) Next, we have: 2N = 2 x \(\begin{pmatrix} 5 & 6 \\ -2 & -3 \end{pmatrix}\) = \(\begin{pmatrix} 10 & 12 \\ -4 & -6 \end{pmatrix}\) Now we can subtract these two matrices to get: 3M - 2N = \(\begin{pmatrix} 9 & 6 \\ -3 & 12 \end{pmatrix}\) - \(\begin{pmatrix} 10 & 12 \\ -4 & -6 \end{pmatrix}\) = \(\begin{pmatrix} -1 & -6 \\ 1 & 18 \end{pmatrix}\) Therefore, the correct answer is (B) \(\begin{pmatrix} -1 & -6 \\ 1 & 18 \end{pmatrix}\).