(a) A jogger is training for 15km charity race. He starts with a run of 500 metres, then he increases the distance he runs daily by 250 metres.
(i) How many days will it take the jogger to reach a distance of 15km in training?
(ii) Calculate the total distance he would have run in the training.
(b) The second term of a Geometric Progression (GP) is -3. If its sum to infinity is 25/2, find its common ratios.
(a)
(i) To reach a distance of 15km, the jogger needs to cover 15000 meters.
Let's call the number of days it takes to reach this distance "n."
On the first day, he runs 500 meters. On the second day, he runs 500 + 250 = 750 meters. On the third day, he runs 750 + 250 = 1000 meters.
In general, on the nth day, he runs 500 + 250(n-1) meters.
So we can set up an equation:
500 + 750 + 1000 + ... + (500 + 250(n-1)) = 15000
Simplifying, we get:
250n^2 + 250n - 15000 = 0
Dividing both sides by 250:
n^2 + n - 60 = 0
This equation can be factored as:
(n + 6)(n - 10) = 0
Since we're looking for a positive value for n, the answer is n = 10.
So it will take the jogger 10 days to reach a distance of 15km in training.
(ii) We can use the formula for the sum of a geometric series:
S = a(1 - r^n)/(1 - r)
where S is the sum of the series, a is the first term, r is the common ratio, and n is the number of terms.
In this case, we know that the second term is -3, so a = 500 * (-3) = -1500.
We also know that the sum to infinity is 25/2, so S = 25/2.
Plugging in these values and solving for r:
25/2 = (-1500)(1 - r^10)/(1 - r)
r = 1/2 or -1 (discarded since a negative ratio would make the terms alternate in sign, and the second term is negative)
So the common ratio is 1/2.
The total distance the jogger would have run in the training is the sum of the terms of the geometric series:
S = a/(1 - r) = (-1500)/(1 - 1/2) = 3000 meters.
(b)
We know that the second term of the GP is -3, so we can write the first two terms as:
a, ar
where ar = -3.
We also know that the sum to infinity is 25/2, so we can use the formula:
S = a/(1 - r)
25/2 = a/(1 - r)
a = 25/2 - 25r/2
Substituting this value of a into the equation ar = -3:
(25/2 - 25r/2)r = -3
Simplifying:
25r^2 - 50r + 6 = 0
We can solve for r using the quadratic formula:
r = (50