Using binomial expansion of ( 1 + x)\(^6\) = 1 + 6x + 15x\(^2\) + 20x\(^3\) + 6x\(^5\) + x)\(^6\), find, correct to three decimal places, the value of (1.99...
Using binomial expansion of ( 1 + x)\(^6\) = 1 + 6x + 15x\(^2\) + 20x\(^3\) + 6x\(^5\) + x)\(^6\), find, correct to three decimal places, the value of (1.998))\(^6\)
Answer Details
To use the binomial expansion of (1 + x)\(^6\), we substitute x = 1.998, which gives:
(1 + 1.998)\(^6\) = 1 + 6(1.998) + 15(1.998)\(^2\) + 20(1.998)\(^3\) + 6(1.998)\(^5\) + (1.998)\(^6\)
We are interested in finding the value of (1.998)\(^6\), which is the last term on the right-hand side of the equation. We can solve for it by subtracting the other terms from both sides of the equation:
(1.998)\(^6\) = (1 + 1.998)\(^6\) - 1 - 6(1.998) - 15(1.998)\(^2\) - 20(1.998)\(^3\) - 6(1.998)\(^5\)
Using a calculator, we can evaluate the right-hand side of the equation to get:
(1.998)\(^6\) ≈ 63.167
Therefore, the correct answer is option B, 63.167, rounded to three decimal places.
Explanation: The binomial expansion of (1 + x)\(^6\) is a formula that allows us to expand the expression into a sum of terms involving powers of x. By substituting x = 1.998, we can use the formula to find the value of (1.998)\(^6\). We then use a calculator to evaluate the expression to obtain the final answer.