The locus of points equidistant from two intersecting straight lines PQ and PR is
Answer Details
The locus of points equidistant from two intersecting straight lines PQ and PR is the point of intersection of the perpendicular bisectors of PQ and PR.
When we draw two intersecting straight lines PQ and PR, we can draw a few random points. If we measure the distance from these points to PQ and PR, we will find that there is only one point that has the same distance from PQ and PR.
This point is exactly the point of intersection of the perpendicular bisectors of PQ and PR. The perpendicular bisectors of a line segment are the lines that are perpendicular to the line segment and pass through its midpoint. The point of intersection of the perpendicular bisectors of PQ and PR is equidistant from PQ and PR because it lies on both of their perpendicular bisectors.
Therefore, the locus of points equidistant from two intersecting straight lines PQ and PR is the point of intersection of the perpendicular bisectors of PQ and PR. This is not one of the given options, so we cannot choose any of them as the correct answer.