To evaluate the expression 2\(\sqrt{28} - 3\sqrt{50} + \sqrt{72}\), we need to simplify the square roots first.
\(\sqrt{28} = 2\sqrt{7}\)
\(\sqrt{50} = 5\sqrt{2}\)
\(\sqrt{72} = 2\sqrt{18} = 2\sqrt{9}\sqrt{2} = 6\sqrt{2}\)
Now that we have simplified the square roots, we can substitute the values back into the expression:
2\(\sqrt{28} - 3\sqrt{50} + \sqrt{72}\) = 2 * 2\(\sqrt{7}\) - 3 * 5\(\sqrt{2}\) + 6\(\sqrt{2}\) = 4\(\sqrt{7}\) - 3 * 5\(\sqrt{2}\) + 6\(\sqrt{2}\) = 4\(\sqrt{7}\) - 15\(\sqrt{2}\) + 6\(\sqrt{2}\) = 4\(\sqrt{7}\) - 9\(\sqrt{2}\)
So the expression evaluates to 4\(\sqrt{7}\) - 9\(\sqrt{2}\).