Evaluate \(\frac{1}{1 - \sin 60°}\), leaving your answer in surd form.
Answer Details
We know that \(\sin 60^{\circ} = \frac{\sqrt{3}}{2}\). Substituting this value in the given expression, we get:
\[\frac{1}{1 - \sin 60^{\circ}} = \frac{1}{1 - \frac{\sqrt{3}}{2}}\]
Rationalizing the denominator by multiplying both numerator and denominator by \(1 + \frac{\sqrt{3}}{2}\), we get:
\begin{align*}
\frac{1}{1 - \sin 60^{\circ}} &= \frac{1}{1 - \frac{\sqrt{3}}{2}} \cdot \frac{1 + \frac{\sqrt{3}}{2}}{1 + \frac{\sqrt{3}}{2}} \\
&= \frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{3}{4}} \\
&= \frac{1 + \frac{\sqrt{3}}{2}}{\frac{1}{4}} \\
&= 4 + 2\sqrt{3}
\end{align*}
Therefore, the answer is \boxed{4 + 2\sqrt{3}}.