If \(\overrightarrow{OA} = 3i + 4j\) and \(\overrightarrow{OB} = 5i - 6j \) where O is the origin and M is the midpoint of AB, find OM.
Answer Details
We can find the midpoint M of AB by using the midpoint formula:
\[\overrightarrow{OM} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2}\]
Substituting the values we have:
\[\overrightarrow{OM} = \frac{(3i + 4j) + (5i - 6j)}{2} = \frac{8i - 2j}{2} = 4i - j\]
Therefore, the answer is 4i - j.