To determine what the galvanometer is converted to in the described scenario, let’s first understand how a galvanometer can be transformed into different measuring devices:
1. Galvanometer to Voltmeter: To convert a galvanometer into a voltmeter, a high resistance (known as a multiplier) is connected in series with the galvanometer. This high resistance ensures that the voltmeter can measure a wide range of voltages without drawing significant current from the circuit.
2. Galvanometer to Ammeter: To convert a galvanometer into an ammeter, a low resistance (called a shunt) is connected in parallel with the galvanometer. This allows the majority of the current to pass through the shunt, enabling the ammeter to measure high currents without damaging the galvanometer.
Since the problem statement does not specify any additional details, a general observation is that a galvanometer is commonly converted into an ammeter using a shunt, especially in basic electrical circuits where current measurement is necessary. Therefore, from the options provided, **the galvanometer is most likely converted to an ammeter**.
**In summary**, if a low resistance is added in parallel with the galvanometer, it becomes an ammeter, while adding a high resistance in series would convert it into a voltmeter. Since the context commonly involves conversion for current measurement, the provided diagram likely represents a galvanometer converted into an ammeter.