A practical application of total internal reflection is found in fiber optics.
To understand this, let's break it down:
When light travels from one medium to another (such as from glass to air), it changes direction. This is known as refraction. However, there is a phenomenon called total internal reflection which occurs when light is traveling within a denser medium towards a less dense medium (like from glass to air) and hits the boundary at an angle greater than a certain critical angle. Instead of passing through, the light is completely reflected back into the denser medium.
Fiber optics technology makes use of this principle. In fiber optics, light is transmitted along the core of a thin glass or plastic fiber. The core is surrounded by another layer called the cladding. This cladding has a lower refractive index than the core, which facilitates total internal reflection. As a result, the light continuously reflects internally along the length of the fiber, allowing it to travel long distances with minimal loss.
This property is harnessed in various applications such as in high-speed telecommunication systems, medical equipment like endoscopes, and other technologies that require the transmission of data over long distances with high efficiency.