Question 1 Report
If cosθ θ = ab a b , find 1 + tan2θ
Answer Details
cosθ θ = ab a b , Sinθ θ = √b2−a2a b 2 − a 2 a Tanθ θ = √b2−a2a2 b 2 − a 2 a 2 , Tan 2 = √b2−a2a2 b 2 − a 2 a 2 1 + tan2θ θ = 1 + b2−a2a2 b 2 − a 2 a 2 = a2+b2−a2a2 a 2 + b 2 − a 2 a 2 = b2a2