If p = \(\frac{1}{2}\) and \(\frac{1}{p - 1} = \frac{2}{p + x}\), find the value of x
Answer Details
Given that p = \(\frac{1}{2}\) and \(\frac{1}{p - 1} = \frac{2}{p + x}\), we want to find the value of x.
We can start by substituting the value of p in the second equation:
\begin{aligned} \frac{1}{p - 1} &= \frac{2}{p + x} \\ \\ \frac{1}{\frac{1}{2} - 1} &= \frac{2}{\frac{1}{2} + x} && \text{(Substitute } p = \frac{1}{2} \text{)}\\ \\ \frac{1}{-\frac{1}{2}} &= \frac{2}{\frac{1}{2} + x} && \text{(Simplify)}\\ \\ -2 &= \frac{2}{\frac{1}{2} + x} && \text{(Simplify)}\\ \\ -2\left(\frac{1}{2} + x\right) &= 2 && \text{(Cross-multiply)}\\ \\ -1 - 2x &= 1 && \text{(Simplify)}\\ \\ -2x &= 2 \\ \\ x &= -1 \end{aligned}
Therefore, the value of x is -1.5, which corresponds to option B: -1\(\frac{1}{2}\).