The table shows the corresponding values of two variables X and Y.
c. Draw the line of best fit through (x?,?) and (x?1,?1).
d. From the graph, determine the relationship between X and Y;
ii. From the graph, determine the value of Y when X is 20.
a. To plot a scatter diagram, we need to plot the given X and Y values as individual points on a graph, where X values are taken as horizontal axis and Y values are taken as vertical axis. The scatter diagram shows the relationship between two variables.

b i. To calculate x?, the mean of X, we add up all the X values and divide by the number of values, i.e., x? = (14+16+17+18+22+24+27+28+31+33) / 10 = 23.
Similarly, to calculate ?, the mean of Y, we add up all the Y values and divide by the number of values, i.e., ? = (22+19+15+13+10+12+3+5+3+2) / 10 = 11.
b ii. To calculate x?1, we need to find the X values that are below x? and then calculate their mean. From the X values given, 14, 16, 17, 18, and 22 are below x? = 23. So, x?1 = (14+16+17+18+22) / 5 = 17.4.
Similarly, we need to find the corresponding Y values that are below x? and then calculate their mean. From the Y values given, corresponding Y values for the X values 14, 16, 17, 18, and 22 are 22, 19, 15, 13, and 10 respectively. So, ?1 = (22+19+15+13+10) / 5 = 15.8.
c. To draw the line of best fit, we need to plot the points (x?, ?) and (x?1, ?1) on the scatter diagram and then draw a straight line passing through these two points. The line should be such that it has an equal number of points above and below it.
d i. From the scatter diagram, we can see that there is a negative relationship between X and Y. As X increases, Y decreases.
d ii. To determine the value of Y when X is 20, we can draw a vertical line from the point X = 20 on the X-axis to the line of best fit. From the point where the line intersects the Y-axis, we can read off the value of Y, which is approximately 12.