(a) If \(x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, y = \begin{pmatrix} 5 \\ -2 \end{pmatrix}\) and \(z = \begin{pmatrix} -4 \\ 13 \end{pmatrix}\), find the ...

Question 1 Report

(a) If \(x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, y = \begin{pmatrix} 5 \\ -2 \end{pmatrix}\) and \(z = \begin{pmatrix} -4 \\ 13 \end{pmatrix}\), find the scalars p and q such that \(px + qy = z\).

(b)(i) Using the scale of 2cm to 2 units on both axis, draw on a graph paper two perpendicular axis x and y for \(-5 \leq x \leq 5, -5 \leq y \leq 5\) respectively.

(ii) Draw, on the graph paper, indicating clearly the vertices and their coordinates,

(1) the quadrilateral WXYZ with W(2, 3), X(4, -1), Y(-3, -4) and Z(-3, 2).

(2) the image \(W_{1}X_{1}Y_{1}Z_{1}\) of the quadrilateral WXYZ under an anti-clockwise rotation of 90° about the origin where \(W \to W_{1}, X \to X_{1}, Y \to Y_{1}\) and \(Z \to Z_{1}\).