To find the terminal p.d. (potential difference), we need to consider the concept of voltage in a circuit. Voltage is the amount of electrical energy per unit charge provided by a power source, in this case, the battery.
In this problem, we are given:
EMF (electromotive force) of the battery = 24.0 V
Internal resistance of the battery = 1.0 Ω
External resistor = 5.0 Ω
When the battery is connected to the external resistor, a current will flow in the circuit. This current is determined by Ohm's law, which states that the current flowing in a circuit is directly proportional to the voltage applied and inversely proportional to the resistance:
I = V / R
where:
I is the current flowing in the circuit
V is the voltage applied
R is the resistance of the circuit
In this case, the voltage applied is the emf of the battery, and the resistance is the sum of the internal resistance and the external resistor.
We can calculate the current flowing in the circuit:
I = 24.0V / (1.0Ω + 5.0Ω) = 24.0V / 6.0Ω = 4.0A
Now, the terminal p.d. is the voltage drop across the external resistor. We can calculate it using Ohm's law:
V = I * R
Substituting the values:
V = 4.0A * 5.0Ω = 20.0V
Therefore, the terminal p.d. is 20.0V.