Which of the following statements is correct about the angle of dip at various points on Earth?
Answer Details
The correct statement about the angle of dip at various points on Earth is: The angle of dip is zero at the equator and 90 degrees at the magnetic poles. The angle of dip, also known as the inclination, refers to the angle between the Earth's magnetic field lines and the horizontal plane at a specific location. It tells us how much the magnetic field lines of the Earth are inclined or tilted at that point.
At the equator, the angle of dip is zero. This means that the magnetic field lines are parallel to the horizontal plane. As we move closer to the magnetic poles, the angle of dip increases. At the magnetic poles, the angle of dip is 90 degrees, indicating that the magnetic field lines are perpendicular to the horizontal plane.
The second statement that the angle of dip is greater at higher altitudes than at lower altitudes is incorrect. The angle of dip is primarily affected by the latitude or distance from the equator and the proximity to the magnetic poles, rather than the altitude. So, the angle of dip remains consistent at a specific latitude regardless of the altitude above sea level.
The third statement that the angle of dip is positive in the northern hemisphere and negative in the southern hemisphere is also incorrect. The angle of dip is positive in the northern hemisphere and negative in the southern hemisphere. This means that the magnetic field lines are inclined downwards in the northern hemisphere and upwards in the southern hemisphere.
The fourth statement that the angle of dip is constant at all points on Earth is incorrect as well. The angle of dip varies depending on the latitude and the proximity to the magnetic poles, as explained earlier. So, it is not constant across all points on Earth.
To summarize, the correct statement is that the angle of dip is zero at the equator and 90 degrees at the magnetic poles. It is important to note that the angle of dip is not affected by altitude but is primarily determined by latitude and proximity to the magnetic poles.