The equation of transverse wave traveling along a string is given by Y = 0.3 sin(0.5x - 50t) where Y and X are in cm and t is in seconds.Find the maximum di...
The equation of transverse wave traveling along a string is given by Y = 0.3 sin(0.5x - 50t) where Y and X are in cm and t is in seconds.Find the maximum displacement of the particles from the equilibrium position
Answer Details
The equation of the transverse wave traveling along a string is given by Y = 0.3 sin(0.5x - 50t), where Y and X are in cm and t is in seconds. The general form of a sine wave equation is Y = A sin(kx - ωt + φ), where A is the amplitude, k is the wave number, ω is the angular frequency, t is time, x is distance and φ is the phase constant. Comparing the given equation with the general equation, we can see that the amplitude is 0.3. The maximum displacement of particles from the equilibrium position is equal to the amplitude. Hence, the maximum displacement of particles from the equilibrium position is 0.3 cm. Therefore, the correct option is 0.3cm.