If the distance between two suspended masses 10kg each is tripled, the gravitational force of attraction between them is reduced by

Answer Details

The gravitational force of attraction between two masses depends on their masses and the distance between them. According to Newton's law of gravitation, the force of attraction is directly proportional to the product of the masses and inversely proportional to the square of the distance between them.
So, if the distance between two suspended masses 10kg each is tripled, the force of attraction between them will be reduced by a factor of 1/9 (1/3 squared). This means the gravitational force of attraction will decrease by 1/9th of its original value.
To understand this, imagine two magnets. The force of attraction between them decreases as they move away from each other. If you triple the distance between them, the force of attraction will be reduced to 1/9th of its original value. Similarly, the gravitational force of attraction between two masses follows the same principle, and the force decreases as the distance between them increases.