To simplify the expression, we first need to find a common denominator for the fractions. The lowest common multiple of the denominators xy and 2xy is 2xy.
\(\frac{3x - y}{xy} - \frac{2x + 3y}{2xy} + \frac{1}{2} = \frac{3x\cdot2 - y\cdot2}{xy\cdot2} - \frac{2x\cdot1 + 3y\cdot1}{2xy\cdot1} + \frac{1\cdot xy}{2\cdot xy}\)
Simplifying further, we get:
\(\frac{6x - 2y}{2xy} - \frac{2x + 3y}{2xy} + \frac{xy}{2xy}\)
Combining like terms, we get:
\(\frac{4x - 5y + xy}{2xy}\)
Therefore, the answer is option D: \(\frac{4x - 5y + xy}{2xy}\).